Home
Class 11
MATHS
If z=(1+7i)/((2-i)^2) , then |z|=2 (b...

If `z=(1+7i)/((2-i)^2)` , then `|z|=2` (b) `|z|=1/2` c) `a m p(z)=pi/4` (d) `a m p(z)=(3pi)/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z=(1+7i)/((2-i)^(2)), then |z|=2(b)|z|=(1)/(2)c)amp(z)=(pi)/(4)(d) amp(z)=(3 pi)/(4)

If |z-i|=1 and amp(z)=(pi)/(2)(z!=0), then z is

If z=(1+2i)/(1-(1-i)^(2)), then arg (z) equals a.0 b.(pi)/(2) c.pi d .non of these

If z=pi/4(1+i)^4((1-(pi)i)/((pi)+i)+((pi)-i)/(1+(pi)i)),then"((|z|)/(a m p(z))) equal

If z=(1+2i)/(1-(1-i)^2), then arg(z) equals a. 0 b. pi/2 c. pi d. non of these

If z=((1+i sqrt(3))^(2))/(4i(1-i sqrt(3))) is a complex number then a.arg(z)=(pi)/(4) b.arg(z)=(pi)/(2)c|z|=(1)/(2)d.|z|=2

If z=((1+isqrt3)^2)/(4i(1-isqrt3)) is a complex number then a. arg(z)=pi/4 b. arg(z)=pi/2 c. |z|=1/2 d. |z|=2

If z=((1+isqrt3)^2)/(4i(1-isqrt3)) is a complex number then a. arg(z)=pi/4 b. arg(z)=pi/2 c. |z|=1/2 d. |z|=2

If (pi)/(2) and (pi)/(4) are the arguments of z_ (1) and bar (z_ (2)) respectively, then Arg ((z_ (1))/(z_ (2)) ) = (i) 3 (pi)/(4) (ii) (pi)/(4) (iii) pi (iv) (pi)/(3)

If "|z-i|=1 &"Arg(z)=(pi)/(2)" then the "z" is (1) "-2i" (2) "0" (4) "2i"