Home
Class 11
MATHS
" 71.If "y=e^(x)+e^(-x)" ,prove that "(d...

" 71.If "y=e^(x)+e^(-x)" ,prove that "(dy)/(1)=sqrt(y^(2)-4)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(x)+e^(-x), prove that (dy)/(dx)=sqrt(y^(2)-4)

If y=e^(x)+e^(-x), prove that (dy)/(dx)=sqrt(y^(2)-4)

If y=e^x+e^(-x) , prove that (dy)/(dx)=sqrt(y^2-4)

If y=e^x+e^-x , prove that (dy)/(dx)=sqrt(y^2-4)

If y^(x)=e^(y-x) , then prove that (dy)/(dx)=((1+log y)^(2))/(logy) .

If y = sin(log_(e) x) prove that (dy)/(dx) = sqrt(1-y^2)/x

If y=e^(x)cos x, prove that (dy)/(dx)=sqrt(2)e^(x)cos(x+(pi)/(4))

If y=(e^x-e^(-x))/(e^x+e^(-x)) , prove that (dy)/(dx)=1-y^2

If y=(e^x-e^(-x))/(e^x+e^(-x)) , prove that (dy)/(dx)=1-y^2

If y=e^xcosx , prove that (dy)/(dx)=sqrt(2)\ e^xcos(x+pi/4)