Home
Class 12
MATHS
=sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2...

=sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))}" find "(dy)/(dx)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^(2))] then find (dy)/(dx)

If y=sin^(-1)(x sqrt(1-x)+sqrt(x)sqrt(1-x^(2))) and (dy)/(dx)=(1)/(2sqrt(x(1-x)))+p, then p,

If y=sin^(-1)(xsqrt(1-x)+sqrt(x)sqrt(1-x^2)) and (dy)/(dx)=1/(2sqrt(x(1-x)))+p , then p is equal to 0 (b) 1/(sqrt(1-x)) sin^(-1)sqrt(x) (d) 1/(sqrt(1-x^2))

Find (dy)/(dx), if y=sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]

If y=cos^(-1){x sqrt(1-x)+sqrt(x)sqrt(1-x^(2))} and 0

If y = sin^(-1) (x sqrt(1-x) - sqrtx sqrt(1-x^(2))) then dy/dx =

If y=sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))) and 0

If y=sin ^(-1) (xsqrt( 1-x) +sqrt(x) sqrt (1-x^(2))),then (dy)/(dx)=

If y=tan^(-1){(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))}, find (dy)/(dx)