Home
Class 12
MATHS
" The value of "lim(x rarr a)(log(x-a))/...

" The value of "lim_(x rarr a)(log(x-a))/(log(e^(x)-e^(a)))" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: lim_(x rarr a)(log(x-a))/(log(e^(x)-e^(a)))

lim_(xtoa) (log(x-a))/(log(e^(x)-e^(a)))

lim_(xtoa) (log(x-a))/(log(e^(x)-e^(a)))

lim_(xtoa) (log(x-a))/(log(e^(x)-e^(a)))

Evaluate: ("lim")_(xveca)("log"(x-a))/(log(e^x-e^a))

Find the value of lim_(x rarr e)(log_(e)x)/(x-e)

Evaluate: lim_(x->a)("log"(x-a))/(log(e^x-e^a))

Evaluate : lim_(x rarr 0)log(1+5 x)/(e^(2x)-1)

lim_(x rarr oo)(x-log x)/(x+log x)