Similar Questions
Explore conceptually related problems
Recommended Questions
- " The value of "lim(x rarr a)(log(x-a))/(log(e^(x)-e^(a)))" is "
Text Solution
|
- Evaluate: ("lim")(xveca)("log"(x-a))/(log(e^x-e^a))
Text Solution
|
- lim(x->e)(lnx)^(1 /(ln(e/x))
Text Solution
|
- lim(x rarr0)(e^(x)-log(ex+e))/(x)
Text Solution
|
- the value of lim(x rarr e)(log x-1)/(x-e) equals to
Text Solution
|
- The value of lim(x rarr a)(log(x-a))/(log(e^(x)-e^(a))) is
Text Solution
|
- lim (x rarr e) (ln x-1) / (xe)
Text Solution
|
- let f(x)=(ln(x^(2)+e^(x)))/(ln(x^(4)+e^(2x))) then lim(x rarr oo)f(x) ...
Text Solution
|
- lim (x rarr e ^ (+)) (ln x) ^ (xe)
Text Solution
|