Home
Class 14
MATHS
Find the value of sin 2295^@....

Find the value of `sin 2295^@`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin 2295^\circ \), we can follow these steps: ### Step 1: Reduce the angle First, we need to reduce \( 2295^\circ \) to an equivalent angle within the range of \( 0^\circ \) to \( 360^\circ \). We can do this by subtracting multiples of \( 360^\circ \). \[ 2295^\circ = 6 \times 360^\circ + 135^\circ \] ### Step 2: Use the sine periodicity property According to the sine function's periodicity, we have: \[ \sin(n \times 360^\circ + \theta) = \sin(\theta) \] In our case, \( n = 6 \) and \( \theta = 135^\circ \). Therefore: \[ \sin(2295^\circ) = \sin(135^\circ) \] ### Step 3: Calculate \( \sin(135^\circ) \) Next, we need to find the value of \( \sin(135^\circ) \). We know that: \[ 135^\circ = 180^\circ - 45^\circ \] Using the sine identity for angles in the second quadrant: \[ \sin(180^\circ - \theta) = \sin(\theta) \] Thus: \[ \sin(135^\circ) = \sin(45^\circ) \] ### Step 4: Find \( \sin(45^\circ) \) The value of \( \sin(45^\circ) \) is known to be: \[ \sin(45^\circ) = \frac{\sqrt{2}}{2} \] ### Final Result Therefore, we conclude that: \[ \sin(2295^\circ) = \sin(135^\circ) = \sin(45^\circ) = \frac{\sqrt{2}}{2} \] ### Summary The value of \( \sin(2295^\circ) \) is \( \frac{\sqrt{2}}{2} \). ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ARIHANT SSC|Exercise Exercise Base Level Questions|75 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise Higher Skill Level Questions|34 Videos
  • TIME, SPEED AND DISTANCE

    ARIHANT SSC|Exercise SPEED TEST (TSD)|10 Videos
  • TRUE DISCOUNT AND BANKER'S DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|23 Videos

Similar Questions

Explore conceptually related problems

Find the value of sin 22.5^(@)

Find the value of sin75^@

Find the value of sin18^@

Find the value of: sin120^(@)

Find the value of sin75^(@) .

Find the value of : sin75^(@)

ARIHANT SSC-TRIGONOMETRY-EXERCISE(LEVEL - 1)
  1. Find the value of sin 2295^@.

    Text Solution

    |

  2. If 0lt theta lt 90^(@), the (sin theta+cos theta) is :

    Text Solution

    |

  3. The value of x satisfying the equation sinx+(1)/(sinx)=(7)/(2sqrt(3)) ...

    Text Solution

    |

  4. If sintheta-cos theta=0 and 0 lt theta le pi//2. then theta is equal t...

    Text Solution

    |

  5. Given that theta is acute and then sin theta=(3)/(5). Let x, y be posi...

    Text Solution

    |

  6. Which one of the following pairs is correctly matched?

    Text Solution

    |

  7. If xtan45^(@).cos60^(@)=sin60^(@)cot60^(@), then x is equal to

    Text Solution

    |

  8. If theta lies in the second quadrant, then sqrt((1-sintheta)/(1+sin th...

    Text Solution

    |

  9. sin^(6)A+cos^(6)A is equal to :

    Text Solution

    |

  10. If sec x=P, " cosec "x=Q, then :

    Text Solution

    |

  11. sin^(2)Acos^(2)B-cos^(2)A sin^(2)B simplifies to :

    Text Solution

    |

  12. If sin2x=n sin 2y, then the value of (tan(x+y))/(tan(x-y)) is :

    Text Solution

    |

  13. The least value of 2sin^2theta+3cos^2theta is 1 (b) 2 (c) 3 (d) ...

    Text Solution

    |

  14. The value of tan(180+theta).tan (90-theta) is :

    Text Solution

    |

  15. log tan 1^@+log tan2^@+log tan3^@+...log tan89^@=

    Text Solution

    |

  16. If we convert sin(-566^(@)) to same trigonometrical ratio of a positiv...

    Text Solution

    |

  17. From the Masthead of a ship, the angle of Depression of boat is 60^@, ...

    Text Solution

    |

  18. A portion of a 30 m long tree is broken by tornado and the top struck ...

    Text Solution

    |

  19. Two posts are 25 m and 15 m high and the line joining their tips makes...

    Text Solution

    |

  20. The angle of elevation of the top of a tower at a point G on the groun...

    Text Solution

    |

  21. If x=sec theta+tan theta, y = sec theta-tan theta, then the relation b...

    Text Solution

    |