Home
Class 14
MATHS
Consider the following I.(cot 30^@+1)...

Consider the following
I.`(cot 30^@+1)/(cot30^@ -1) = 2 (cos300^@ +1)`
II. `2 sin 45^@ cos 45^@ - tan 45^@ cot 45^@ = 0`
Which of the above identities is/are correct ?

A

Only I

B

Only II

C

Both I andII

D

Neither I nor II

Text Solution

AI Generated Solution

The correct Answer is:
To determine which of the given identities is correct, we will analyze each equation step by step. ### Step 1: Analyze the first identity The first identity is: \[ \frac{\cot 30^\circ + 1}{\cot 30^\circ - 1} = 2 (\cos 300^\circ + 1) \] #### Step 1.1: Calculate \(\cot 30^\circ\) We know that: \[ \cot 30^\circ = \frac{1}{\tan 30^\circ} = \frac{1}{\frac{1}{\sqrt{3}}} = \sqrt{3} \] #### Step 1.2: Substitute \(\cot 30^\circ\) into the equation Substituting \(\cot 30^\circ\) into the left-hand side: \[ \frac{\sqrt{3} + 1}{\sqrt{3} - 1} \] #### Step 1.3: Simplify the left-hand side To simplify, we rationalize the denominator: \[ \frac{\sqrt{3} + 1}{\sqrt{3} - 1} \cdot \frac{\sqrt{3} + 1}{\sqrt{3} + 1} = \frac{(\sqrt{3} + 1)^2}{(\sqrt{3})^2 - (1)^2} = \frac{3 + 2\sqrt{3} + 1}{3 - 1} = \frac{4 + 2\sqrt{3}}{2} = 2 + \sqrt{3} \] #### Step 1.4: Calculate \(\cos 300^\circ\) Next, we find \(\cos 300^\circ\): \[ \cos 300^\circ = \cos(360^\circ - 60^\circ) = \cos 60^\circ = \frac{1}{2} \] #### Step 1.5: Substitute \(\cos 300^\circ\) into the right-hand side Now substituting into the right-hand side: \[ 2 \left(\frac{1}{2} + 1\right) = 2 \left(\frac{1}{2} + \frac{2}{2}\right) = 2 \cdot \frac{3}{2} = 3 \] #### Step 1.6: Compare both sides Now we compare both sides: \[ 2 + \sqrt{3} \quad \text{and} \quad 3 \] Since \(2 + \sqrt{3} \approx 3.732\) which is not equal to \(3\), the first identity is incorrect. ### Step 2: Analyze the second identity The second identity is: \[ 2 \sin 45^\circ \cos 45^\circ - \tan 45^\circ \cot 45^\circ = 0 \] #### Step 2.1: Calculate \(\sin 45^\circ\) and \(\cos 45^\circ\) We know: \[ \sin 45^\circ = \cos 45^\circ = \frac{\sqrt{2}}{2} \] #### Step 2.2: Substitute into the left-hand side Substituting into the left-hand side: \[ 2 \left(\frac{\sqrt{2}}{2}\right) \left(\frac{\sqrt{2}}{2}\right) - \tan 45^\circ \cot 45^\circ \] \[ = 2 \cdot \frac{2}{4} - 1 \cdot 1 = 1 - 1 = 0 \] #### Step 2.3: Conclusion for the second identity Since the left-hand side equals the right-hand side, the second identity is correct. ### Final Conclusion - The first identity is incorrect. - The second identity is correct. Thus, the answer is that only the second identity is correct. ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ARIHANT SSC|Exercise Higher Skill Level Questions|34 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.1|5 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise EXERCISE(LEVEL - 1)|35 Videos
  • TIME, SPEED AND DISTANCE

    ARIHANT SSC|Exercise SPEED TEST (TSD)|10 Videos
  • TRUE DISCOUNT AND BANKER'S DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|23 Videos

Similar Questions

Explore conceptually related problems

If y sin 45^0 cos 45^0 = tan^2 45^0 cos^2 30^0 then y =

Find the value of the following log_(cot30^@)tan45^@

If A = (sin 45^(@) - sin 30^(@))/(cos 45^(@) + cos 60^(@)) and B = (sec 45^(@) - tan 45^(@))/(cosec 45^(@) + cot 45^(@)) , then which one of the following is correct ?

sin^2 60^@+cos^2 30^@ + cot^2 45^@ + sec^2 60 ^@=?

Find the value of the following (i) tan 60^@ xx cos 30^@ (ii) sin 45^@ * cos 45^@ – sin^2 30^@ (iii) 2 sin 45^@* cos 45^@*tan 45^@ (iv) cos 30^@* cos 45^@ – sin 30^@* sin 45^@ (v) tan 30^@* sec 45^@ + tan 60^@* sec 30^@

If x cos 60^(@) + y cos 0^(@) = 3 and 4x sin 30^(@) - y cot 45^(@) = 2 , then what is the value of x ?

If tan x = sin45^(@) cos 45^(@) + sin 30^(@) then x is equal to

Evaluate the following (i) sin 60^@ cos30^@ + sin 30^@ cos 60^@ (ii) 2tan^2 45^@ + cos^2 30^@ - sin^2 60^@ (iii) (cos45^@)/(sec30^@ + c o s e c 30^@) (iv) (sin30^@ + tan45^@ - c o s e c 60^@ )/(sec30^@ + cos60^@ +cot45^@) (v) (5cos^2 60^@ + 4sec^2 30^@ - tan^2 45^@ )/ (sin^2 30^@ + cos^2 30^@ )

The value of sin 0^(@) + cos 30^(@) - tan 45^(@) + cosec 60^(@) + cot 90^(@) is equal to

ARIHANT SSC-TRIGONOMETRY-Exercise Base Level Questions
  1. If sin theta - cos theta = 0, then what is sin^4 theta + cos^4 theta e...

    Text Solution

    |

  2. The expression sin^2 x + cos^2 x -1 =0 is satisfied by how many values...

    Text Solution

    |

  3. Consider the following I.(cot 30^@+1)/(cot30^@ -1) = 2 (cos300^@ +1...

    Text Solution

    |

  4. What is sin A cos A tan A + cos A cot A equal to ?

    Text Solution

    |

  5. 2(cos^2theta-sin^2theta)=1 ( theta is a positive acute angle), then ...

    Text Solution

    |

  6. The minimum value of cos^2 theta+ sec^2 theta is

    Text Solution

    |

  7. If cos x + cos y =2, then the value of sinx + sin y is

    Text Solution

    |

  8. if sec^(2)theta+tan^(@)theta=(7)/(12), then sec^(4)theta-tan^(4)theta=

    Text Solution

    |

  9. The numerical value of ((1)/(costheta)+(1)/(cot theta))((1)/(costhet...

    Text Solution

    |

  10. यदि A=tan11^(@)tan29^(@),B=2cot61^(@)cot79^(@) है तो

    Text Solution

    |

  11. If tan 2 theta.tan 4 theta =1, then the value of 3 theta is

    Text Solution

    |

  12. If sin theta + cosec theta =2,then the value of sin^5theta cosec^5 the...

    Text Solution

    |

  13. If A=sin^(2) theta + cos^(4) theta , then for all values of theta ,...

    Text Solution

    |

  14. The minimum value of 2 sin^2 theta + 3cos^2 theta is

    Text Solution

    |

  15. The value of cot10^@ cot20^@ cot60^@ cot 70^@ cot 80^@ is

    Text Solution

    |

  16. If cos theta cosec 23^@ = 1, then the value of theta is

    Text Solution

    |

  17. If theta is a positive acute angle and tan 2theta tan 3 theta =1, then...

    Text Solution

    |

  18. If 0^@ lt theta lt 90^@, then the value of sin theta + cos theta is

    Text Solution

    |

  19. If sin theta + cosec theta =2,then the value of sin^100 theta + cosec^...

    Text Solution

    |

  20. If [sintheta+costheta]/[sintheta-costheta]=3,then find the value of si...

    Text Solution

    |