Home
Class 14
MATHS
If (sin theta + cos theta)/(sin theta - ...

If `(sin theta + cos theta)/(sin theta - cos theta) = (5)/(4)` , the value of `(tan^(2) theta + 1)/(tan^(2) theta - 1) ` is

A

`(25)/(16)`

B

`(41)/(9)`

C

`(41)/(40)`

D

`(40)/(41)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{\sin \theta + \cos \theta}{\sin \theta - \cos \theta} = \frac{5}{4}\) and find the value of \(\frac{\tan^2 \theta + 1}{\tan^2 \theta - 1}\), we can follow these steps: ### Step 1: Cross-multiply the given equation Starting from the equation: \[ \frac{\sin \theta + \cos \theta}{\sin \theta - \cos \theta} = \frac{5}{4} \] Cross-multiplying gives: \[ 4(\sin \theta + \cos \theta) = 5(\sin \theta - \cos \theta) \] ### Step 2: Expand both sides Expanding both sides results in: \[ 4\sin \theta + 4\cos \theta = 5\sin \theta - 5\cos \theta \] ### Step 3: Rearrange the equation Rearranging the equation to isolate terms involving \(\sin \theta\) and \(\cos \theta\): \[ 4\sin \theta + 4\cos \theta - 5\sin \theta + 5\cos \theta = 0 \] This simplifies to: \[ - \sin \theta + 9\cos \theta = 0 \] ### Step 4: Solve for \(\tan \theta\) From the equation \(-\sin \theta + 9\cos \theta = 0\), we can express \(\tan \theta\): \[ \sin \theta = 9\cos \theta \implies \tan \theta = \frac{\sin \theta}{\cos \theta} = 9 \] ### Step 5: Calculate \(\tan^2 \theta\) Now, we find \(\tan^2 \theta\): \[ \tan^2 \theta = 9^2 = 81 \] ### Step 6: Substitute into the expression Now we substitute \(\tan^2 \theta\) into the expression \(\frac{\tan^2 \theta + 1}{\tan^2 \theta - 1}\): \[ \frac{\tan^2 \theta + 1}{\tan^2 \theta - 1} = \frac{81 + 1}{81 - 1} = \frac{82}{80} \] ### Step 7: Simplify the fraction Finally, simplifying \(\frac{82}{80}\): \[ \frac{82}{80} = \frac{41}{40} \] Thus, the value of \(\frac{\tan^2 \theta + 1}{\tan^2 \theta - 1}\) is \(\frac{41}{40}\). ### Final Answer: \[ \frac{41}{40} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY

    ARIHANT SSC|Exercise Higher Skill Level Questions|34 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.1|5 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise EXERCISE(LEVEL - 1)|35 Videos
  • TIME, SPEED AND DISTANCE

    ARIHANT SSC|Exercise SPEED TEST (TSD)|10 Videos
  • TRUE DISCOUNT AND BANKER'S DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|23 Videos

Similar Questions

Explore conceptually related problems

If (sin theta+cos theta)/(sin theta-cos theta)=(5)/(3) evaluate (7tan theta+2)/(2tan theta+7)

(1 + sin theta-cos theta) / (1 + sin theta + cos theta) = (tan theta) / (2)

Knowledge Check

  • If cos theta = (3)/(5) , then the value of (sin theta - tan theta + 1)/( 2 tan^(2) theta) is

    A
    `(13)/(15)`
    B
    `(91)/(160)`
    C
    `(14)/(15)`
    D
    `(92)/(160)`
  • If cos theta = (3)/(5) , then the value of (sin theta . tan theta + 1)/( 2 tan ^(2) theta) is

    A
    `(88)/(160)`
    B
    `(91)/(160)`
    C
    `(92)/(160)`
    D
    `(93)/(160)`
  • If sin theta = cos theta ,then the value of 2 tan^(2) theta + sin^(2) theta -1 is equal to

    A
    `1/2`
    B
    `5/2`
    C
    `3/2`
    D
    2
  • Similar Questions

    Explore conceptually related problems

    Prove that (sin theta - cos theta +1)/(sin theta + cos theta -1) = (1)/((sec theta - tan theta)).

    (sin theta-cos theta + 1) / (sin theta + cos theta-1) = (1) / (sec theta-tan theta)

    (1+sin2 theta-cos2 theta)/(1+sin2 theta+cos2 theta)=tan theta

    (sin theta-cos theta + 1) / (sin theta + cos theta-1) = sec theta + tan theta

    If cos theta=(3)/(5), find the value of (sin theta-(1)/(tan theta))/(2tan theta)