Home
Class 14
MATHS
If x = 7 - 4 sqrt(3) , then sqrt(x) + (1...

If `x = 7 - 4 sqrt(3)` , then `sqrt(x) + (1)/(sqrt(x))` is equal to

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( x = 7 - 4\sqrt{3} \) and we need to find \( \sqrt{x} + \frac{1}{\sqrt{x}} \), we can follow these steps: ### Step 1: Identify the value of \( x \) We are given: \[ x = 7 - 4\sqrt{3} \] ### Step 2: Express \( x \) in a different form Notice that \( 7 - 4\sqrt{3} \) can be rewritten as: \[ x = 7 - 2(2\sqrt{3}) \] This suggests a potential perfect square form. ### Step 3: Recognize the perfect square We can express \( x \) as: \[ x = (2 - \sqrt{3})^2 \] This is because: \[ (2 - \sqrt{3})^2 = 2^2 - 2 \cdot 2 \cdot \sqrt{3} + (\sqrt{3})^2 = 4 - 4\sqrt{3} + 3 = 7 - 4\sqrt{3} \] ### Step 4: Find \( \sqrt{x} \) Taking the square root of both sides, we have: \[ \sqrt{x} = 2 - \sqrt{3} \] ### Step 5: Find \( \frac{1}{\sqrt{x}} \) Now, we need to find \( \frac{1}{\sqrt{x}} \): \[ \frac{1}{\sqrt{x}} = \frac{1}{2 - \sqrt{3}} \] To rationalize the denominator, multiply the numerator and denominator by \( 2 + \sqrt{3} \): \[ \frac{1}{\sqrt{x}} = \frac{2 + \sqrt{3}}{(2 - \sqrt{3})(2 + \sqrt{3})} = \frac{2 + \sqrt{3}}{4 - 3} = 2 + \sqrt{3} \] ### Step 6: Add \( \sqrt{x} \) and \( \frac{1}{\sqrt{x}} \) Now we can find \( \sqrt{x} + \frac{1}{\sqrt{x}} \): \[ \sqrt{x} + \frac{1}{\sqrt{x}} = (2 - \sqrt{3}) + (2 + \sqrt{3}) \] The \( -\sqrt{3} \) and \( +\sqrt{3} \) cancel out: \[ \sqrt{x} + \frac{1}{\sqrt{x}} = 2 + 2 = 4 \] ### Final Answer Thus, the value of \( \sqrt{x} + \frac{1}{\sqrt{x}} \) is: \[ \boxed{4} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PRACTICE SET

    ARIHANT SSC|Exercise PRACTICE SET-4|50 Videos
  • PRACTICE SET

    ARIHANT SSC|Exercise PRACTICE SET-5|50 Videos
  • PRACTICE SET

    ARIHANT SSC|Exercise PRACTICE SET-2|50 Videos
  • PIPES AND CISTERNS

    ARIHANT SSC|Exercise EXERCISE HIGHER SKILL LEVEL QUESTION|17 Videos
  • PROBABILITY

    ARIHANT SSC|Exercise EXERCISE (LEVEL-2)|19 Videos

Similar Questions

Explore conceptually related problems

If x+(1)/(x)=5, then sqrt(x)+(1)/(sqrt(x)) is equal to

If x=7-4sqrt(3) then find the value of sqrt(x)+(1)/(sqrt(x))

Knowledge Check

  • If x=3-2sqrt(2) , then sqrt(x)+((1)/(sqrt(x))) is equal to

    A
    `0`
    B
    `1`
    C
    `2`
    D
    `2sqrt(2)`
  • If x = 7 - 4 sqrt(3) , then the value of (x + (1)/(x)) is

    A
    `3 sqrt(3)`
    B
    `8 sqrt(3)`
    C
    `14 + 8 sqrt(3)`
    D
    14
  • If x = sqrt(7 - 4 sqrt(3)) , then x + (1)/(x) is equal to :

    A
    2
    B
    `3 sqrt(7)`
    C
    4
    D
    `4 sqrt(7)`
  • Similar Questions

    Explore conceptually related problems

    If x=7+4sqrt(3), then find the value of sqrt(x)+(1)/(sqrt(x))

    If x=7+4sqrt(3), then find the value of sqrt(x)+(1)/(sqrt(x))

    int(sqrt(x))/(1+4sqrt(x^(3)))dx is equal to

    int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "

    If x = (7+ 4 sqrt(3)) then (x+(1)/(x))= ?