Home
Class 14
MATHS
If F = a.(|b|).c.(|d|).e.(|f|).g(|h|).i....

If `F = a.(|b|).c.(|d|).e.(|f|).g(|h|).i.(|j|)` and `G = a.b.c. d.e.f.g.h.i.j` Again, `a = (-1)^1, b = (2)^(-2) , c = (-3)^(3), d = (4)^(-4) ,…..j = (10)^(-10)` then the correct relation is :

A

`F =-G`

B

`F = G`

C

`F.G = 1`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expressions for \( F \) and \( G \) given the values of \( a \) through \( j \). ### Step 1: Define the values of \( a \) through \( j \) Given: - \( a = (-1)^1 = -1 \) - \( b = 2^{-2} = \frac{1}{2^2} = \frac{1}{4} \) - \( c = (-3)^3 = -27 \) - \( d = 4^{-4} = \frac{1}{4^4} = \frac{1}{256} \) - \( e = (-5)^5 = -3125 \) - \( f = 6^{-6} = \frac{1}{6^6} = \frac{1}{46656} \) - \( g = 7^{-7} = \frac{1}{7^7} \) - \( h = (-8)^8 = 8^8 \) (which is positive) - \( i = 9^{-9} = \frac{1}{9^9} \) - \( j = 10^{-10} = \frac{1}{10^{10}} \) ### Step 2: Calculate \( F \) The expression for \( F \) is: \[ F = a \cdot |b| \cdot c \cdot |d| \cdot e \cdot |f| \cdot g \cdot |h| \cdot i \cdot |j| \] Substituting the values: \[ F = (-1) \cdot \left|\frac{1}{4}\right| \cdot (-27) \cdot \left|\frac{1}{256}\right| \cdot (-3125) \cdot \left|\frac{1}{46656}\right| \cdot \left(\frac{1}{7^7}\right) \cdot 8^8 \cdot \left(\frac{1}{9^9}\right) \cdot \left(\frac{1}{10^{10}}\right) \] ### Step 3: Simplify \( F \) Calculating the absolute values: \[ F = (-1) \cdot \frac{1}{4} \cdot (-27) \cdot \frac{1}{256} \cdot (-3125) \cdot \frac{1}{46656} \cdot \frac{1}{7^7} \cdot 8^8 \cdot \frac{1}{9^9} \cdot \frac{1}{10^{10}} \] Now, count the negative signs: - There are 3 negative terms: \( (-1), (-27), (-3125) \), which results in a negative product. Thus, we can rewrite \( F \) as: \[ F = -\left(\frac{1}{4} \cdot 27 \cdot \frac{1}{256} \cdot 3125 \cdot \frac{1}{46656} \cdot \frac{1}{7^7} \cdot 8^8 \cdot \frac{1}{9^9} \cdot \frac{1}{10^{10}}\right) \] ### Step 4: Calculate \( G \) The expression for \( G \) is: \[ G = a \cdot b \cdot c \cdot d \cdot e \cdot f \cdot g \cdot h \cdot i \cdot j \] Substituting the values: \[ G = (-1) \cdot \frac{1}{4} \cdot (-27) \cdot \frac{1}{256} \cdot (-3125) \cdot \frac{1}{46656} \cdot \frac{1}{7^7} \cdot 8^8 \cdot \frac{1}{9^9} \cdot \frac{1}{10^{10}} \] ### Step 5: Simplify \( G \) Counting the negative signs: - There are 3 negative terms: \( (-1), (-27), (-3125) \), which results in a negative product. Thus, we can rewrite \( G \) as: \[ G = -\left(\frac{1}{4} \cdot 27 \cdot \frac{1}{256} \cdot 3125 \cdot \frac{1}{46656} \cdot \frac{1}{7^7} \cdot 8^8 \cdot \frac{1}{9^9} \cdot \frac{1}{10^{10}}\right) \] ### Step 6: Compare \( F \) and \( G \) From the simplifications, we see that: \[ F = -G \] ### Conclusion The correct relation is: \[ F = -G \]
Promotional Banner

Topper's Solved these Questions

  • FUNDAMENTALS

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 1.1|34 Videos
  • FUNDAMENTALS

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 1.2|16 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise Final Round|40 Videos
  • GEOMETRY

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|52 Videos

Similar Questions

Explore conceptually related problems

Which of the following show G.I. ? a. b. c. d. e. f. g. h. i. j. k. l.

Let R be a relation such that R={(a d) (c g) (d e) (d f) (g f)} then (ROR^(1))^(-1) is

Identify the products and explain their formation. (a) (b) ( c) (d) ( e) (f) (g) (h) (i) .

If A = {a,b,c,d,e }, B= {a,c,e, g} and C = {b,e, f,g} verify that : (i) A cap (B-C) =(A cap B) -(A cap C) (ii) A- (Bcap C) =(A-B)cup (A-C)

In Fig.97, If A B is parallel to CD, then the value of /_B P E is (a) ( b ) (c) (d) (e) 106^(( f )0( g ))( h ) (i) (j) (b) ( k ) (l) (m) (n) 76^(( o )0( p ))( q ) (r) (s) (c) ( d ) (e) (f) (g) 74^(( h )0( i ))( j ) (k) (l) (d) ( m ) (n) (o) (p) 84^(( q )0( r ))( s ) (t) (u)

Two complementary angles are in the ratio 2: 3. The measure of the larger angle is (a) ( b ) (c) (d) (e) 60^(( f )0( g ))( h ) (i) (j) (b) ( k ) (l) (m) (n) 54^(( o )0( p ))( q ) (r) (s) (c) ( d ) (e) (f) (g) 66^(( h )0( i ))( j ) (k) (l) (d) ( m ) (n) (o) (p) 48^(( q )0( r ))( s ) (t) (u)

If a,b are the zeroes of f(x)=x^(2)+3x+1 and c, d are the zero of g(x)=x^(2)+4x+1 then the value E=((a-c)(b-c)(a+a)(b+d))/(2) is

ARIHANT SSC-FUNDAMENTALS -TEST OF YOU - LEARNING - 2
  1. If F = a.(|b|).c.(|d|).e.(|f|).g(|h|).i.(|j|) and G = a.b.c. d.e.f.g.h...

    Text Solution

    |

  2. The remainder when 888222888222888222… upto 9235 digits is divided by ...

    Text Solution

    |

  3. Shankuntala asked Aryabhatta to assume any two values of three digits ...

    Text Solution

    |

  4. Shankuntala asked Aryabhatta to assume any two values of three digits ...

    Text Solution

    |

  5. The sum of the following series (1^2 +1) + (2^2 + 2) + (3^2 + 3) + (...

    Text Solution

    |

  6. Find a fraction which shall bear the same ratio to 1/27 that 3/5 does ...

    Text Solution

    |

  7. Three times the cube of a number is seven times the other number. What...

    Text Solution

    |

  8. 40% of a number is equal to three fourth's of another number. What is ...

    Text Solution

    |

  9. In a class of 60 students, each student got sweets that are 15% the to...

    Text Solution

    |

  10. Under the scheme of Kisan Vikas, the Govt. of U.P. purchased 't' numbe...

    Text Solution

    |

  11. Under the scheme of Kisan Vikas, the Govt. of U.P. purchased 't' numbe...

    Text Solution

    |

  12. If 2^n can exactly divide p! such that the quotient is an odd positive...

    Text Solution

    |

  13. A shopkeeper bought 72 oranges for 324. He sold 50 of them at rs 6 eac...

    Text Solution

    |

  14. In the above question number 12, the minimum number of xi (i.e, x1, x2...

    Text Solution

    |

  15. In an examination 90% of the student passed and 240 failed. How many s...

    Text Solution

    |

  16. If m + n = mn - 5, then the maximum number of ordered pairs of (m,n) f...

    Text Solution

    |

  17. At the eve of marriage anniversary of Tristan and lseult some special ...

    Text Solution

    |

  18. The number of numbers less than or equal to 666 which are the products...

    Text Solution

    |

  19. Tata, Hutch and Idea started of with a same. The rule is that the lose...

    Text Solution

    |

  20. When N is divided by 4, the remainder is 3. What is the remainder when...

    Text Solution

    |

  21. All the soldiers are arranged in the form of an equilateral triangle i...

    Text Solution

    |