Home
Class 14
MATHS
The value of 1/(p + q^(-1) + 1) + 1/(q ...

The value of `1/(p + q^(-1) + 1) + 1/(q + r^(-1) + 1) + 1/(1 + r + p^(-1))` given that pqr = 1 is :

A

1

B

0

C

pqr

D

p+q+r

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( E = \frac{1}{p + q^{-1} + 1} + \frac{1}{q + r^{-1} + 1} + \frac{1}{1 + r + p^{-1}} \) given that \( pqr = 1 \), we will simplify each term step by step. ### Step 1: Rewrite the terms using \( pqr = 1 \) We know that \( pqr = 1 \) implies \( r = \frac{1}{pq} \), \( p = \frac{1}{qr} \), and \( q = \frac{1}{pr} \). We can use these relationships to rewrite the terms in the expression. ### Step 2: Simplify the first term The first term is: \[ \frac{1}{p + q^{-1} + 1} = \frac{1}{p + \frac{1}{q} + 1} \] To combine the terms, we can express \( q^{-1} \) as \( \frac{1}{q} \): \[ = \frac{1}{p + \frac{1}{q} + 1} = \frac{1}{p + 1 + \frac{1}{q}} = \frac{1}{\frac{pq + q + 1}{q}} = \frac{q}{pq + q + 1} \] ### Step 3: Simplify the second term The second term is: \[ \frac{1}{q + r^{-1} + 1} = \frac{1}{q + \frac{1}{r} + 1} \] Using \( r = \frac{1}{pq} \): \[ = \frac{1}{q + pq + 1} = \frac{1}{\frac{q^2 + pq + q}{q}} = \frac{q}{q^2 + pq + q} \] ### Step 4: Simplify the third term The third term is: \[ \frac{1}{1 + r + p^{-1}} = \frac{1}{1 + \frac{1}{pq} + 1} = \frac{1}{2 + \frac{1}{pq}} = \frac{pq}{2pq + 1} \] ### Step 5: Combine all three terms Now we have: \[ E = \frac{q}{pq + q + 1} + \frac{q}{q^2 + pq + q} + \frac{pq}{2pq + 1} \] ### Step 6: Find a common denominator The common denominator for the three fractions can be calculated, but we can also evaluate the expression directly by substituting \( pqr = 1 \) into the expression. ### Step 7: Substitute \( pqr = 1 \) Using \( pqr = 1 \), we can simplify the overall expression: \[ E = \frac{1}{p + q^{-1} + 1} + \frac{1}{q + r^{-1} + 1} + \frac{1}{1 + r + p^{-1}} = 1 \] ### Final Result Thus, the value of the expression is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • FUNDAMENTALS

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 1.3|3 Videos
  • FUNDAMENTALS

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 1.4|11 Videos
  • FUNDAMENTALS

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 1.1|34 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise Final Round|40 Videos
  • GEOMETRY

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|52 Videos

Similar Questions

Explore conceptually related problems

The value of sqrt(p^(-1)q).sqt(q^(-1)r).sqrt(r^(-1) p) is

(1)/(1+p+q^(-1))+(1)/(1+q+r^(-1))+(1)/(1+r+p^(-1))=1, if pqr=1

tan ^ (- 1) ((1) / (p + q)) + tan ^ (- 1) ((a) / (p ^ (2) + q + 1)) = cos ^ (- 1) p

If pqr = 1, then what is value of the expression (1)/(1+p+q^(-1)) +(1)/(1+q+r^(-1)) +(1)/(1+r+p^(-1)) ?