Home
Class 14
MATHS
(1 - 1/3) (1 - 1/4)(1 - 1/5)………(1 - 1/n)...

`(1 - 1/3) (1 - 1/4)(1 - 1/5)………(1 - 1/n)` equals:

A

`1/n`

B

`2/n`

C

`3/n`

D

`4/n`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((1 - \frac{1}{3})(1 - \frac{1}{4})(1 - \frac{1}{5}) \ldots (1 - \frac{1}{n})\), we will break it down step by step. ### Step 1: Rewrite Each Term We start by rewriting each term in the product: \[ 1 - \frac{1}{k} = \frac{k - 1}{k} \] for \(k = 3, 4, 5, \ldots, n\). ### Step 2: Substitute the Terms Now we can substitute this into our product: \[ (1 - \frac{1}{3})(1 - \frac{1}{4})(1 - \frac{1}{5}) \ldots (1 - \frac{1}{n}) = \frac{2}{3} \cdot \frac{3}{4} \cdot \frac{4}{5} \cdots \frac{n-1}{n} \] ### Step 3: Write the Complete Product The complete product can be written as: \[ \frac{2}{3} \cdot \frac{3}{4} \cdot \frac{4}{5} \cdots \frac{n-1}{n} = \frac{2 \cdot 3 \cdot 4 \cdots (n-1)}{3 \cdot 4 \cdots n} \] ### Step 4: Cancel Common Terms Notice that in the numerator and denominator, many terms will cancel out: \[ = \frac{2}{n} \] because all terms from \(3\) to \(n-1\) in the numerator and denominator cancel each other. ### Step 5: Final Result Thus, the final result of the expression is: \[ \frac{2}{n} \]
Promotional Banner

Topper's Solved these Questions

  • FUNDAMENTALS

    ARIHANT SSC|Exercise LEVEL 1|140 Videos
  • FUNDAMENTALS

    ARIHANT SSC|Exercise LEVEL 2|123 Videos
  • FUNDAMENTALS

    ARIHANT SSC|Exercise PRACTICE EXERCISE|60 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise Final Round|40 Videos
  • GEOMETRY

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|52 Videos

Similar Questions

Explore conceptually related problems

The value of (1 - 1/2) (1 - 1/3) (1 - 1/4)(1 - 1/5) ………(1 - 1/n) is :

The value of (1-1/2)(1-1/3)(1-1/4)(1-1/5)…(1-1/n) is :

(1 - (1)/(3)) (1 - (1)/(4)) (1 - (1)/(5)) ….. (1 - (1)/(25)) is equal to

When simplified the product (1 - (1)/(3)) (1 - (1)/(4)) (1- (1)/(5)) …. (1 - (1)/(n)) becomes :

Find the value of ( 1 - 1/3 ) ( 1 - 1/4 ) ( 1 - 1/5 ) ---------- ( 1 - 1/n ) is ( a ) 2/n ( b ) 4/n ( c ) 3/n ( d ) 5/n

When simplified the product (1-1/3)(1-1/4)(1-1/5)......(1-1/n) becomes :

(1/3. 1/3. 1/3 + 1/4. 1/4. 1/4 - 3. 1/3. 1/4. 1/5 + 1/5. 1/5. 1/5)/(1/3. 1/3 + 1/4. 1/4 + 1/5. 1/5 - (1/3. 1/4 + 1/4. 1/5 + 1/5. 1/3)) is equal to

lim_(nto oo) (1-1/(2^(2)))(1-1/(3^(2)))(1-1/(4^(2)))…………….(1-1/(n^(2))) equals:

The expression (1+1/3)(1+1/4)(1+1/5)…(1+1/n) simplifies to :

ARIHANT SSC-FUNDAMENTALS -EXERCISE - MISCELLANEOUS
  1. The total number of prime number between 120 and 140 is :

    Text Solution

    |

  2. The number 12375 is divisible by :

    Text Solution

    |

  3. (1 - 1/3) (1 - 1/4)(1 - 1/5)………(1 - 1/n) equals:

    Text Solution

    |

  4. If x/2 = y/3, then [4/5 + (y - x)/(y+x)] equals :

    Text Solution

    |

  5. The value of ((119)^2 + (119)(111) + (111)^2)/((119)^3 - (111)^3) is :

    Text Solution

    |

  6. A number consists of two digits. The sum of the digits is 11, reversin...

    Text Solution

    |

  7. For a journey the cost of a child ticket is 1/3 rd of the cost of an a...

    Text Solution

    |

  8. 9^(3//2) div (243)^(-2//3) simplifies to :

    Text Solution

    |

  9. The solution of (25)^(x -2) = (125)^(2x - 4) :

    Text Solution

    |

  10. If a^x = b^y = c^z and b/a = c/b then (2z)/(x + z) is equal to:

    Text Solution

    |

  11. If x < 0 < y, then :

    Text Solution

    |

  12. The expression 33.33 div 1.1 simplifies as :

    Text Solution

    |

  13. If |x - 2| < 3 then :

    Text Solution

    |

  14. A fraction becomes 4 when 1 is added to both the numerator and denomin...

    Text Solution

    |

  15. The expression (a - b)^3 + (b - c)^3 + (c - a)^3 = 0 if :

    Text Solution

    |

  16. If a + b + c = 11, a^2 + b^2 + c^2 = 51, what is the value of ab + bc ...

    Text Solution

    |

  17. If x + y + z = 0, then the value of (x^2)/(yz) + (y^2)/(zx) + (z^2)/(x...

    Text Solution

    |

  18. The value of ((e^x + e^(-x))/(2))^(2) - ((e^x - e^(-x))/(2))^(2) is :

    Text Solution

    |

  19. The continued product of (1 + x), (1 + x^2), (1 + x^4), (1 + x^8) and ...

    Text Solution

    |

  20. Find the value of x and y in the given equation 5 7/x xx y 1/13 = 12:

    Text Solution

    |