Home
Class 14
MATHS
1^2 - 2^2 + 3^2 - 4^2 + ….. - 198^2 + ...

`1^2 - 2^2 + 3^2 - 4^2 + ….. - 198^2 + 199^2 ` :

A

19900

B

12321

C

19998

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(1^2 - 2^2 + 3^2 - 4^2 + \ldots - 198^2 + 199^2\), we can follow these steps: ### Step 1: Group the terms We can group the terms in pairs: \[ (1^2 - 2^2) + (3^2 - 4^2) + (5^2 - 6^2) + \ldots + (197^2 - 198^2) + 199^2 \] ### Step 2: Simplify each pair Using the difference of squares formula, \(a^2 - b^2 = (a - b)(a + b)\), we can simplify each pair: \[ 1^2 - 2^2 = (1 - 2)(1 + 2) = (-1)(3) = -3 \] \[ 3^2 - 4^2 = (3 - 4)(3 + 4) = (-1)(7) = -7 \] \[ 5^2 - 6^2 = (5 - 6)(5 + 6) = (-1)(11) = -11 \] Continuing this pattern, we see that: \[ (2n - 1)^2 - (2n)^2 = (-1)(4n - 1) = -(4n - 1) \] ### Step 3: Write the general form for the pairs The general form for the pairs can be written as: \[ -(4n - 1) \] where \(n\) takes values from 1 to 99 (since there are 198 terms from 1 to 198). ### Step 4: Calculate the sum of the pairs The total number of pairs is 99 (from 1 to 198). The sum of the pairs is: \[ \sum_{n=1}^{99} -(4n - 1) = -\left(4\sum_{n=1}^{99} n - \sum_{n=1}^{99} 1\right) \] The sum of the first 99 natural numbers is: \[ \sum_{n=1}^{99} n = \frac{99 \times 100}{2} = 4950 \] And the sum of 1 for 99 terms is: \[ \sum_{n=1}^{99} 1 = 99 \] Thus, we have: \[ - \left(4 \times 4950 - 99\right) = - (19800 - 99) = -19701 \] ### Step 5: Add the last term Now, we add the last term \(199^2\): \[ 199^2 = 39601 \] So, the final result is: \[ -19701 + 39601 = 19900 \] ### Final Answer The value of the expression \(1^2 - 2^2 + 3^2 - 4^2 + \ldots - 198^2 + 199^2\) is \(19900\). ---
Promotional Banner

Topper's Solved these Questions

  • FUNDAMENTALS

    ARIHANT SSC|Exercise FINAL ROUND|116 Videos
  • FUNDAMENTALS

    ARIHANT SSC|Exercise TEST OF YOU - LEARNING - 1|40 Videos
  • FUNDAMENTALS

    ARIHANT SSC|Exercise LEVEL 1|140 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise Final Round|40 Videos
  • GEOMETRY

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|52 Videos

Similar Questions

Explore conceptually related problems

In the following list of numerals, how many 2's are followed by 1's but not preceded by 4 ? 4 2 1 2 1 4 2 1 1 2 4 4 4 1 2 2 1 2 1 2 1 4 4 2 1 4 2 1 2 1 2 4 1 4 2 1 2 4 1 4 6 1) 2 2) 3 3) 4 4) 5 5) None of these

The nth term of the given sequence 3/ (1^ 2) ⋅ 5/ (1^ 2 + 2^ 2) ⋅ 7/ (1^ 2 + 2^ 2 + 3^ 2) ⋅ 9/ (1^ 2 + 2^ 2 + 3^ 2 + 4^ 2)

The value of the determinant =1^2 2^2 3^2 4^2 2^2 3^2 4^25^2 3^2 4^25^2 6^2 4^2 5^2 6^2 7^2 is equal to 1 b. 0 c. 2 d. 3

1+ (1 + 2) / (2!) + (1 + 2 + 3) / (3!) + (1 + 2 + 3 + 4) / (4!) + ...... oo

Following are the margins of victory in the football matches of a league 1, 3, 2, 5, 1, 4, 6,2, 5, 2, 2, 2, 4, 1, 2, 3, 1, 1, 2, 3, 2, 6, 4, 3, 2, 1, 1, 4, 2, 1, 5, 3, 3, 2, 3, 2, 4, 2, 1, 2, 7, 1, 2, 2, 5, 2, 7 Find the mode of this data

Evaluate the following: |[1^2, 2^2, 3^2],[2^2, 3^2, 4^2],[3^2, 4^2, 5^2]|

Find the value of: (i) (82)^(2) - (18)^(2) (ii) (128)^(2) - (72)^(2) (iii) 197 xx 203 (iv) (198 xx 198 - 102 xx 102)/(96) (v) (14.7 xx 15.3) (vi) (8.63)^(2) - (1.37)^(2)

Find the value of. (i) (3^@+4^(-1)) xx 2^2 (ii) (2^(-1)xx 4^(-1))-: 2^(-1) (iii) (1/2)^-2 + (1/3)^-2 + (1/4)^-2 (iv) (3^-1 + 4^-1+ 5^(-1))^0 (v) {((-2)/3)^-2}^2

Value of y = 1 - 1/2 + 1/4 - 1/8 --------- ∞ (1) 2/3 ( 2 ) 2 ( 3 ) 1/2 ( 4 ) 3/2

1.2^(2)+2.3^(2)+3.4^(2)+

ARIHANT SSC-FUNDAMENTALS -LEVEL 2
  1. A man sells chocolate which are in the boxes. Only either full box or ...

    Text Solution

    |

  2. If n^2 = 123454321, then the value of n is :

    Text Solution

    |

  3. 1^2 - 2^2 + 3^2 - 4^2 + ….. - 198^2 + 199^2 :

    Text Solution

    |

  4. The quotient when L.C.M. is divided by the H.C.F. of a G.P. with first...

    Text Solution

    |

  5. Once I met two persons of the same parents namely Ashmit and Amish. Me...

    Text Solution

    |

  6. If p < q, then p "@" q = p # q else p "@" q = q # p where a # b = a/b....

    Text Solution

    |

  7. A six digit number is such that every alternate digit is a prime digit...

    Text Solution

    |

  8. Total number of digits in the product of (4)^(1111) xx (5)^(2222) is :

    Text Solution

    |

  9. If p = N + 5 when N is the product of any three consecutive postivie i...

    Text Solution

    |

  10. If p/q and r/s are two rational numbers then the relation |p/q| < |r...

    Text Solution

    |

  11. If u^v + v^w + w^x = 0 For every negative integer u, v, w, x the value...

    Text Solution

    |

  12. The unit digit of 2^(3^4) xx 3^(4^5) xx 4^(5^6) xx 5^(6^7) xx 6^(7^8) ...

    Text Solution

    |

  13. If (a-7)(b-10)(c-12) = 1000, the least possible value of (a+b+c) equal...

    Text Solution

    |

  14. If the number 23^(32) - 9 is divided by 16, then the remainder is :

    Text Solution

    |

  15. If (x - 5) (y + 6)(z -8)= 1331, then the minimum value x + y + z is :

    Text Solution

    |

  16. If x + y + z =21, then the maximum value of (x - 6) (y + 7)(z - 4) is...

    Text Solution

    |

  17. The remainder 'R' when 3^(37)+ 4^(37) is divided by 7 is :

    Text Solution

    |

  18. 7^(74) - 4^(74) is divisible by :

    Text Solution

    |

  19. The factorial of a number n is exactly divisible by (2^(11) xx 11^2) ...

    Text Solution

    |

  20. The number of zeros at the end of the product of : 2^3 xx 3^4 xx 4^5...

    Text Solution

    |