Home
Class 14
MATHS
In a GP of real number , the sum of firs...

In a GP of real number , the sum of first four number is 30 and sum of their squares is 340 . The third term of the series is.

A

a. 5

B

b. 16

C

c. 8

D

d. 10

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the third term of a geometric progression (GP) where the sum of the first four terms is 30 and the sum of their squares is 340. ### Step-by-step Solution: 1. **Define the terms of the GP**: Let the first term be \( a \) and the common ratio be \( r \). The first four terms of the GP can be expressed as: - First term: \( a \) - Second term: \( ar \) - Third term: \( ar^2 \) - Fourth term: \( ar^3 \) 2. **Set up the equations**: From the problem statement, we have two equations: - The sum of the first four terms: \[ a + ar + ar^2 + ar^3 = 30 \] This can be factored as: \[ a(1 + r + r^2 + r^3) = 30 \quad \text{(Equation 1)} \] - The sum of the squares of the first four terms: \[ a^2 + (ar)^2 + (ar^2)^2 + (ar^3)^2 = 340 \] This can be simplified to: \[ a^2(1 + r^2 + r^4 + r^6) = 340 \quad \text{(Equation 2)} \] 3. **Express the sums in terms of \( a \) and \( r \)**: From Equation 1, we can express \( a \) in terms of \( r \): \[ a = \frac{30}{1 + r + r^2 + r^3} \] 4. **Substitute \( a \) into Equation 2**: Substitute \( a \) into Equation 2: \[ \left(\frac{30}{1 + r + r^2 + r^3}\right)^2(1 + r^2 + r^4 + r^6) = 340 \] Simplifying this gives: \[ \frac{900(1 + r^2 + r^4 + r^6)}{(1 + r + r^2 + r^3)^2} = 340 \] Cross-multiplying yields: \[ 900(1 + r^2 + r^4 + r^6) = 340(1 + r + r^2 + r^3)^2 \] 5. **Simplify and solve for \( r \)**: After simplifying, we can derive a polynomial equation in terms of \( r \). Solving this polynomial will give us the values of \( r \). 6. **Find \( a \)**: Once we have the value of \( r \), we can substitute back to find \( a \) using Equation 1. 7. **Calculate the third term**: The third term of the GP is given by: \[ ar^2 \] Substitute the values of \( a \) and \( r \) to find the third term. ### Final Calculation: After solving the polynomial, we find: - \( r = 2 \) - \( a = 2 \) Thus, the third term is: \[ ar^2 = 2 \cdot 2^2 = 2 \cdot 4 = 8 \] ### Conclusion: The third term of the series is **8**. ---
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE, SERIES & PROGRESSIONS

    ARIHANT SSC|Exercise Final Round|18 Videos
  • SEQUENCE, SERIES & PROGRESSIONS

    ARIHANT SSC|Exercise EXERCISE LEVEL-1|43 Videos
  • RATIO, PROPORTION & VARIATION

    ARIHANT SSC|Exercise FINAL ROUND|16 Videos
  • SET THEORY

    ARIHANT SSC|Exercise EXERCISE - 15 (LEVEL -1)|29 Videos

Similar Questions

Explore conceptually related problems

The sum of three numbers in G.P. is 31 and sum of their squares is 651. Find the numbers.

A geometric progression of real numbers is such that the sum of its first four terms is equal to 30 and the sum of the squares of the first four terms is 340. Then

The sum of the first three terms of an A.P. is 9 and the sum of their squares is 35. The sum to first n terms of the series can be

The sum of an infinite numbers of a G.P. is 2 and the sum of their cubes is 24. The second term of the G.P. is

. The sum of an infinite number of terms of a G.P.is 20 ,and the sum of their squares is 100, then the first term of the G.P.is

ARIHANT SSC-SEQUENCE, SERIES & PROGRESSIONS-EXERCISE LEVEL-2
  1. Sum of infinite series 1/(1*4)+1/(4*7)+1/(7*10)+......oo is

    Text Solution

    |

  2. A sequence of real numbers a(1), a(2), a(3),......a(n+1) is such that ...

    Text Solution

    |

  3. In a GP of real number , the sum of first four number is 30 and sum of...

    Text Solution

    |

  4. A square is drawn by joining the mid points of the sides of a given sq...

    Text Solution

    |

  5. An A.P. and a G.P. with positive terms have the same number of terms a...

    Text Solution

    |

  6. If first and (2n−1)^(th) terms of an A.P., G.P. and H.P. are equal a...

    Text Solution

    |

  7. 1^k + 2^k + 3^k + … + n^k is divisble by 1 + 2 +3 + … n for every n in...

    Text Solution

    |

  8. If pth , qth, rth and sth terms of an A.P. and in G.P then p-q, q-r , ...

    Text Solution

    |

  9. The price of a car depreciates in the first year by 25% in the second ...

    Text Solution

    |

  10. In 40 litres mixture of milk and water the ratio of milk to water is 7...

    Text Solution

    |

  11. What will be the 33rd terms of the sequences 1,7, 25,79,…?

    Text Solution

    |

  12. All the four angles of a quadrilateral are in G.P. with common ratio r...

    Text Solution

    |

  13. A hemispherical bowl of internal diameter 54cm contains a liquid. The ...

    Text Solution

    |

  14. A and B started a business by investing money in ratio of 4 : 5. After...

    Text Solution

    |

  15. The income of HBI on the nth day is Rs. (n^2 +2) and the expenditure o...

    Text Solution

    |

  16. In the zoolozical park lucknow there are four kinds of animals viz. El...

    Text Solution

    |

  17. In the zoolozical park lucknow there are four kinds of animals viz. El...

    Text Solution

    |

  18. What is the sum of n terms of the series -1 + 1^2 - 2 + 2^2 - 3 + 3^2 ...

    Text Solution

    |

  19. Find the LCM of 1/3 , 2/9 ,5/9 and 4/(27) .

    Text Solution

    |

  20. Sum of n terms of the series log a + log((a^2)/(b)) + log((a^3)/(b^...

    Text Solution

    |