Home
Class 14
MATHS
Sum of n terms of the series log a + ...

Sum of n terms of the series
`log a + log((a^2)/(b)) + log((a^3)/(b^2)) + log ((a^4)/(b^3)) + ...` is :

A

`log {(a^n)/(b^(n-1))}^(n//2)`

B

`log {(a^(n+1))/(b^(n-1))}^(n//2)`

C

`log {(a^n)/(b^n)}^(n//2)`

D

`log {(a^(n+1))/(b^n)}^(n//2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the first \( n \) terms of the series \[ \log a + \log\left(\frac{a^2}{b}\right) + \log\left(\frac{a^3}{b^2}\right) + \log\left(\frac{a^4}{b^3}\right) + \ldots \] we can break down the terms step by step. ### Step 1: Rewrite the Terms The series can be rewritten using logarithmic properties. Recall that: \[ \log\left(\frac{x}{y}\right) = \log x - \log y \] Thus, we can express each term in the series as: \[ \log a + \left(\log a^2 - \log b\right) + \left(\log a^3 - \log b^2\right) + \left(\log a^4 - \log b^3\right) + \ldots \] ### Step 2: Expand the Series Now, let's expand the series: \[ \log a + \log a^2 - \log b + \log a^3 - \log b^2 + \log a^4 - \log b^3 + \ldots \] Grouping the terms gives: \[ (\log a + \log a^2 + \log a^3 + \log a^4 + \ldots) - (\log b + \log b^2 + \log b^3 + \ldots) \] ### Step 3: Sum the Logarithms of \( a \) The first part is a sum of logarithms of powers of \( a \): \[ \log a + \log a^2 + \log a^3 + \ldots + \log a^n = \log(a^1 \cdot a^2 \cdot a^3 \cdots a^n) \] The product can be simplified using the property of exponents: \[ = \log(a^{1 + 2 + 3 + \ldots + n}) = \log(a^{\frac{n(n+1)}{2}}) \] ### Step 4: Sum the Logarithms of \( b \) Now, for the second part: \[ \log b + \log b^2 + \log b^3 + \ldots + \log b^{n-1} = \log(b^1 \cdot b^2 \cdots b^{n-1}) = \log(b^{1 + 2 + \ldots + (n-1)}) = \log(b^{\frac{(n-1)n}{2}}) \] ### Step 5: Combine the Results Now, combining both parts, we get: \[ \log\left(a^{\frac{n(n+1)}{2}}\right) - \log\left(b^{\frac{(n-1)n}{2}}\right) \] Using the property of logarithms: \[ = \log\left(\frac{a^{\frac{n(n+1)}{2}}}{b^{\frac{(n-1)n}{2}}}\right) \] ### Final Step: Simplify Thus, the sum of the first \( n \) terms of the series is: \[ \log\left(\frac{a^{\frac{n(n+1)}{2}}}{b^{\frac{(n-1)n}{2}}}\right) \] ### Final Answer The sum of \( n \) terms of the series is: \[ \log\left(\frac{a^{\frac{n(n+1)}{2}}}{b^{\frac{(n-1)n}{2}}}\right) \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE, SERIES & PROGRESSIONS

    ARIHANT SSC|Exercise Final Round|18 Videos
  • SEQUENCE, SERIES & PROGRESSIONS

    ARIHANT SSC|Exercise EXERCISE LEVEL-1|43 Videos
  • RATIO, PROPORTION & VARIATION

    ARIHANT SSC|Exercise FINAL ROUND|16 Videos
  • SET THEORY

    ARIHANT SSC|Exercise EXERCISE - 15 (LEVEL -1)|29 Videos

Similar Questions

Explore conceptually related problems

Find the sum of n terms of the series log a+log((a^(2))/(b))+log((a^(3))/(b^(2)))+log((a^(4))/(b^(3)))

Show that the sequence log a,log((a^(2))/(b)),log((a^(3))/(b^(2))),log((a^(4))/(b^(3))) forms an A.P.

The sequence log((a)/(b)),log((a^(2))/(b^(2))),log((a^(3))/(b^(3)))......... is

The sum of the series log_(a)b+log_(a^(2))b^(2)+log_(a^(3))b^(3)+....log_(a^(n))b^(n)

Simplify log(a^(2)times b^(3))-log((a^(3))/(b^(2)))

Find the sum of 'n' terms of the series. log_(2)(x/y) + log_(4)(x/y)^(2) + log_(8)(x/y)^(3) + log_(16)(x/y)^(4) +……..

log (a^(2)/b)+log(a^(4)/b^(3)) + log (a^(6)/b^(3))+…… +log ((a^(2n))/b^(n))=?

ARIHANT SSC-SEQUENCE, SERIES & PROGRESSIONS-EXERCISE LEVEL-2
  1. In 40 litres mixture of milk and water the ratio of milk to water is 7...

    Text Solution

    |

  2. What will be the 33rd terms of the sequences 1,7, 25,79,…?

    Text Solution

    |

  3. All the four angles of a quadrilateral are in G.P. with common ratio r...

    Text Solution

    |

  4. A hemispherical bowl of internal diameter 54cm contains a liquid. The ...

    Text Solution

    |

  5. A and B started a business by investing money in ratio of 4 : 5. After...

    Text Solution

    |

  6. The income of HBI on the nth day is Rs. (n^2 +2) and the expenditure o...

    Text Solution

    |

  7. In the zoolozical park lucknow there are four kinds of animals viz. El...

    Text Solution

    |

  8. In the zoolozical park lucknow there are four kinds of animals viz. El...

    Text Solution

    |

  9. What is the sum of n terms of the series -1 + 1^2 - 2 + 2^2 - 3 + 3^2 ...

    Text Solution

    |

  10. Find the LCM of 1/3 , 2/9 ,5/9 and 4/(27) .

    Text Solution

    |

  11. Sum of n terms of the series log a + log((a^2)/(b)) + log((a^3)/(b^...

    Text Solution

    |

  12. If a1 , a2 , a3, …."" an are in A.P. where ai gt 0 for all i , then th...

    Text Solution

    |

  13. If x, y, z are in A.P. and tan^(-1) x, tan^(-1) y and tan^(-1)z are al...

    Text Solution

    |

  14. If 1 , logy , x , logz , y , -15 logx z are in A.P. , then which is co...

    Text Solution

    |

  15. If x , y, z are in G.P. and a^x = b^y = c^z , then logb a* logb c is ...

    Text Solution

    |

  16. If log(2)(5.2^(x)+1),log(4)(2^(1-x)+1) and 1 are in A.P,then x equals

    Text Solution

    |

  17. If 1,log9(3^(1-x)+2), log3(4*3^x-1) are in A.P then x equals to

    Text Solution

    |

  18. 17. If x gt 1, y gt 1, z gt1 are in G.P, then 1/(1+ ln x), 1/( 1+ ln ...

    Text Solution

    |

  19. Let a(1), a(2), …., a(10) be in A.P and h(1), h(2),…. , h(10) be I H.P...

    Text Solution

    |

  20. Let S1 , S2 , …. Be squares such that for each n ge 1 the length of a...

    Text Solution

    |