Home
Class 12
MATHS
lim(theta->0)([(nsintheta)/theta]+[(ntan...

`lim_(theta->0)([(nsintheta)/theta]+[(ntantheta)/theta])` where [] represents greatest integer function

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(theta rarr0)[(12sin theta)/(theta)]+[(13tan theta)/(theta)]=k where [^(*)] denotes greatest integer,then [(k)/(5)] is equal to:

Evaluate: lim (tan x)/(x) where [.] represents the greatest integer function

if f(n,theta)=prod_(r=1)^(n) (1-tan^(2)(theta)/(2^(r))) then the value of lim_(thetato0) [lim_(ntoinfty) f(n,theta)] , (where [x] represent the greatest integer function) is

lim_(theta to0)(sin7theta)/(sin3theta) is

If I_(1)=int_(0)^(1)(dx)/(e^(x)(1+x)) and I_(2)=int_(0)^( pi/2)(e^(sin^(2)theta)sin theta cos theta d theta)/((2-sin^(2)theta)) then (where [ .] denotes greatest integer function)

lim _( theta to 0) ( sin 5theta)/( tan 4theta)

The limit underset( theta rarr0 ) ("lim") ([ (nsin theta)/( theta) ]+ [ ( n tan theta )/( theta)] ) ,n in N is ( where [ **] denotes greatest integer function )

Evaluate: lim_(x rarr0)(sin x)/(x), where [.] represents the greatest integer function.

lim_(x rarr0)(tan^(2)[x])/([x]^(2)), where [] represents greatest integer function,is

Prove that [lim_(xto0) (sinx)/(x)]=0, where [.] represents the greatest integer function.