Home
Class 10
MATHS
यदि x=a sin theta और y=btan, theta तो स...

यदि `x=a sin theta` और `y=btan, theta` तो सिद्ध करो कि `(a^(2))/x^(2)-(b^(2))/(y^(2))=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a sin theta and y=b tan theta , then prove that (a^(2))/(x^(2))-(b^(2))/(y^(2))=1 .

If x=a sin theta and y=b tan theta, then prove that (a^(2))/(x^(2))-(b^(2))/(y^(2))=1

If x=a sin theta and y=b tan theta , then find the value of (a^(2))/(x^(2))-(b^(2))/(y^(2))

If x=a sin theta and y=b cos theta , then prove : (x^(2))/(a^(2))+(y^(2))/(b^(2))=1

If x=a sec theta,y=b tan theta, then prove that (x^(2))/(a^(2))-(y^(2))/(b^(2))=1

x=b sin^(2)theta & y=a cos^(2)theta

If x=a sin theta and y = b cos theta , " write the value of " (b^(2)x^(2)+a^(2)y^(2)).

If x=a(theta+sin theta),y=a(1+cos theta), prove that (d^(2)y)/(dx^(2))=-(a)/(y^(2))

If x=a sin theta and y=b cos theta, what is the value of b^(2)x^(2)+a^(2)y^(2)?

(x) / (a) cos theta + (y) / (b) sin theta = 1, (x) / (a) sin theta- (y) / (b) cos theta = 1 then (x ^ (2)) / (a ^ (2)) + (y ^ (2)) / (b ^ (2)) =