Home
Class 12
MATHS
If (1+x)(1+x^2)(1+x^4)(1+x^(128))=sum(r=...

If `(1+x)(1+x^2)(1+x^4)(1+x^(128))=sum_(r=0)^n x^r` then `n` is equal to `256` b. `255` c. `254` d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+x)(1+x^2)(1+x^4)....(1+x^128)=sum_(r=0)^nx^r then n is

If (1+x)(1+x^2)(1+x^4)….(1+x^(128))=Sigma_(r=0)^(n) x^r , then n is equal is

If (1+x)(1+x^2)(1+x^4)….(1+x^(128))=Sigma_(r=0)^(n) x^r , then n is equal is

If (1+a)(1+a^(2))(1+a^(4)) . . . . (1+a^(128))=sum_(r=0)^(n) a^(r ) , then n is equal to

lim_(xto1) (sum_(r=1)^(n)x^(r)-n)/(x-1) is equal to

If (1-x^2)^n=sum_(r=0)^na_rx^r(1-x)^(2n-r) , then a_r is equal to

lim_(xrarr2)(sum_(r=1)^(n)x^r-sum_(r=1)^(n)2r)/(x-2) is equal to

lim_(xrarr2)(sum_(r=1)^(n)x^r-sum_(r=1)^(n)2^r)/(x-2) is equal to

The coefficient of x^(n) in (1+x)^(101)(1-x+x^(2))^(100) is nonzero,then n cannot be of the form 3r+1 b.3r c.3r+2 d. none of these