Home
Class 11
MATHS
If lim(x->0) (x^(-3)sin3x+ax^(-2)+b) exi...

If `lim_(x->0) (x^(-3)sin3x+ax^(-2)+b)` exists and is equal to `0` then

Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(x rarr0)(x^(-3)sin3x+ax^(-2)+b) exists and is equal to 0 then

If lim_(x rarr0)(x^(-3)sin3x+ax^(-2)+b) exists and is equal to 0, then (a)a=-3 and b=(9)/(2)(b)a=3 and b=(9)/(2)(c)a=-3 and b=-(9)/(2) (d) a=3 and b=-(9)/(2)

If lim_(xrarr0)(x^(-3)sin3x+a x^(-2)+b) exists and is equal to 0, then (a) a=-3 and b=9/2 (b) a=3 and b=9/2 (c) a=-3 and b=-9/2 (d) a=3 and b=-9/2

If lim_(xrarr0)(x^(-3)sin3x+a x^(-2)+b) exists and is equal to 0, then (a) a=-3 and b=9/2 (b) a=3 and b=9/2 (c) a=-3 and b=-9/2 (d) a=3 and b=-9/2

If lim_(xto0)(x^(-3)sin3x+ax^(-2)+b) exists and is equal to zero the value of a+2b is………..

If ("lim")_(xvec0)(x^(-3)sin3x+a x^(-2)+b) exists and is equal to 0, then a=-3a n db=9/2 a=3a n db=9/2 a=-3a n db=-9/2 a=3a n db=-9/2

If lim xto0(x^(-3)sin3x+a x^(-2)+b) exists and is equal to 0, then

If lim_(x to 0) (2a sin x-sin2x)/(tan^(3)x) exists and is equal to 1, then the value of a is