Home
Class 12
MATHS
Let d/(dx) (F(x))= e^(sinx)/x, x>0. If ...

Let `d/(dx) (F(x))= e^(sinx)/x, x>0`. If `int_1^4 2e^sin(x^2)/x dx = F(k)-F(1)`, then possible value of k is:

Promotional Banner

Similar Questions

Explore conceptually related problems

Let (d)/(dx)(F(x))=(e^(sin x))/(x),x>0. If int_(1)^(4)2(e^(sin(x^(2))))/(x)dx=F(k)-F(1), then possible value of k is:

Fundamental theorem of definite integral : (d)/(dx)(F(x))=(e^(sinx))/(x),ngt0 . If int_(1)^(4)(2e^(sinx^(2)))/(x)dx=F(k)-F(1) then the possible value of k is……..

Let d/(dx)F(x)=((e^(sinx))/x),x > 0. If int_1^4 3/x e^sin x^3dx=F(k)-F(1), then one of the possible values of k , is: 15 (b) 16 (c) 63 (d) 64

Let d/(dx)F(x)=(e^(sinx))/x . x lt0 . If int_(1)^(4)(2e^(sinx^(2)))/xdx=F(k)-F(1) then find the possible value of k .

Let d/(dx)F(x)=((e^(sinx))/x),x > 0. If int_1^4 3/x e^(sin x^3)dx=F(k)-F(1), then one of the possible values of k , is: 15 (b) 16 (c) 63 (d) 64

Let d/(dx)F(x)=((e^(sinx))/x),x > 0. If int_1^4 3/x e^sin (x^3)dx=F(k)-F(1), then one of the possible values of k , is: (a) 15 (b) 16 (c) 63 (d) 64

Let d/(dx) F(x) = ((e^(sin x))/(x)) , x > 0 . If int_1^4 3/x e^(sin x^3) dx = F(k) - F(1) , then one of the possible values of k is :