Home
Class 10
MATHS
" (1) sec^(2)A+cosec^(2)A=sec^(2)A*cosec...

" (1) `sec^(2)A+cosec^(2)A=sec^(2)A*cosec^(2)A`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sec^(2)A+"cosec"^(2)A=sec^(2)A"cosec"^(2)A .

sqrt(tan^(4) A + cot ^(4) A+ 2)= A) 1 + sec^(2) A + csc^(2)A B) sec^(2)A +csc^(2)A+2 C) sec^(2)A + csc^(2)A - 2 D) 3-sec^(2)A*csc^(2)A

Sec^2θ + cosec^2θ = sec^2θ * cosec^2θ

Prove that: 2sec^(2)A-sec^(4)A-2"cosec"^(2)A+"cosec"^(4)A=cot^(4)A-tan^(4)A

Prove that: 2sec^(2)A-sec^(4)A-2"cosec"^(2)A+"cosec"^(4)A=cot^(4)A-tan^(4)A

The value of (sec^(2)θ /cosec^(2)θ) + (cosec^(2)θ /sec^(2)θ )-(sec^(2)θ + cosec^(2)θ) is : (sec^(2)θ /cosec^(2)θ) + (cosec^(2)θ /sec^(2)θ )-(sec^(2)θ + cosec^(2)θ) का मान बराबर है :

The expression cosec^(2)A cot^(2)A-sec^(2)A tan^(2)A-(cot^(2)A-tan^(2)A)(sec^(2)A cosec^(2)A-1) is equal to

The expression cosec^(2)A cot^(2)A-sec^(2)A tan^(2)A-(cot^(2)A-tan^(2)A)(sec^(2)A cosec^(2)A-1) is equal to

(cot^(2)A*sec A)/(cos^(2)A*sin^(2)A)=sec A*cosec^(4)A

If the vectors (sec^(2)A)hati+hatj+hatk, hati+(sec^(2)B)hatj+hatk,hati+hatj+(sec^(2) c)hatk are coplanar, then the value of cosec^(2)A+cosec^(2)B+cosec^(2)C , is