Home
Class 12
MATHS
If the curves x^(2)/a^(2)+ y^(2)/4 = 1 ...

If the curves `x^(2)/a^(2)+ y^(2)/4 = 1 ` and `y^(3) = 16x` intersect at right angles, then `a^(2)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If the curves (x^(2))/(a^(2))+(y^(2))/(4)=1 and y^(3)=16x intersect at right angles , then 3a^(2) is equal to ________

If the curves (x^(2))/(a^(2))+(y^(2))/(4)=1 and y^(3)=16x intersect at right angles , then 3a^(2) is equal to ________

If the curves (x ^(2))/(a ^(2))+ (y^(2))/(4)= 1 and y ^(2)= 16x intersect at right angles, then:

If the curves (x ^(2))/(a ^(2))+ (y^(2))/(4)= 1 and y ^(2)= 16x intersect at right angles, then:

If the curves (x^(2))/(a^(2)) + (y^(2))/(12) = 1 and y^(3) = 8x intersect at right angles, then the value of a^(2) is equal to

If the curves (x ^(2))/(a ^(2)) + (y ^(2))/(12) =1 and y ^(3) =8x intersect at right angles, then the value of a ^(2) is equal to

If the curves (x^(2))/(a^(2))+(y^(2))/(4)=1 and y^(3)=16x intersect at right angles, show that a^(2)=(4)/(3) .

If the curves (x^(2))/(alpha)+(y^(2))/(4)=1 and y^(3)=16x intresect at right angles, then a value of alpha is