Home
Class 12
MATHS
If angles A, B and C are in AP, then wha...

If angles A, B and C are in AP, then what is sin A + 2 sin B + sin C equal to ?

Promotional Banner

Similar Questions

Explore conceptually related problems

If A + B + C = 180^(@) , then what is sin 2A - sin 2N - sin 2C equal to ?

if A+B+C=180^(@), then what is sin2A-sin2B-sin2C equal to?

If A+B-C=3 pi, then sin A+sin B-sin C is equal to -

If three angles A, B, and C are in A.P. prove that: cot B=(sin A-sin C)/(cos C-cos A)

If A, B, C are the angles of a triangle, then sin 2A + sin 2B - sin 2C is equal to

If A, B, C are the angles of a triangle, then sin 2A + sin 2B - sin 2C is equal to

If the angles A, B, C are in A.P., prove that cot B = (sin A-sin C)/(cos C-cosA) .

If the angles A,B,C are in A.P., prove that cot B=("sin" A-"sin" C)/(cos C-cos A)

If angle A,B,C of Delta ABC form an increasing AP,then sin B=

If angle A,B,C of Delta ABC form an increasing AP,then sin B=