Home
Class 12
MATHS
Range of f(x) =sin^20x+cos^48x is (A) [0...

Range of `f(x) =sin^20x+cos^48x` is (A) `[0,1]` (B) `(0,1]` (C) `(0,oo)` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If a!=0 and log_x (a^2+1)lt0 then x lies in the interval (A) (0,oo) (B) (0,1) (C) (0,a) (D) none of these

The range of f(x)=sin^(-1)x+sqrt(x) is (i) R(ii)(0,oo)(iii)(0,1) (iv) none of these

The values of x for which 1/(1+sqrt(x)), 1/(1-x), 1/(1-sqrt(x) are in A.P. lie in the interval (A) (0,oo) (B) (1,oo) (C) (0,1) (D) none of these

The values of x for which 1/(1+sqrt(x)), 1/(1-x), 1/(1-sqrt(x) are in A.P. lie in the interval (A) (0,oo) (B) (1,oo) (C) (0,1) (D) none of these

int_0^oo (xlogx)/(1+x^2)^2dx= (A) e (B) 1 (C) 0 (D) none of these

If a!=0 and log_(x)(a^(2)+1)<0 then x lies in the interval (A)(0,oo)(B)(0,1)(C)(0,a)(D) none of these

The range of f(x)=sin^(-1)((x^2+1)/(x^2+2)) is [0,pi/2] (b) (0,pi/6) (c) [pi/6,pi/2] (d) none of these

The domain of definition of the function f(x)=ln{x}+sqrt(x-2{x}) is: (where { } denotes fractional part function) (A) (1,oo) (B) (0,oo) (C) (1,oo)~I^(+) (D) None of these

Given that f'(x) > g'(x) for all real x, and f(0)=g(0). Then f(x) < g(x) for all x belong to (a) (0,oo) (b) (-oo,0) (c) (-oo,oo) (d) none of these

Given that f'(x) > g'(x) for all real x, and f(0)=g(0) . Then f(x) < g(x) for all x belong to (a) (0,oo) (b) (-oo,0) (c) (-oo,oo) (d) none of these