Home
Class 12
MATHS
If int(1)/(x^(2)+2x+2)dx=f (x) +C , then...

If `int(1)/(x^(2)+2x+2)dx=f (x) +C` , then f (x)=

Promotional Banner

Similar Questions

Explore conceptually related problems

If int(1)/(f(x))dx=log[f(x)]^(2)+c , then f(x)=

int_(x^(2)/x^2+1)dx=x+f(x)+c

If int(dx)/(x^(2)+ax+1)=f(x(x))+c, then f(x) is inverse trigonometric function for |a|>2f(x) is logarithmic function for |a| 2g(x) is rational function for |a|<2

If inte^(x)(1+x^(2))/((1+x)^(2))dx=e^(x)f(x)+c , then f(x)=

If inte^(x)((1-x)/(1+x^(2)))^(2)dx=e^(x)f(x)+c, then f(x)=

If int(dx)/(x^(2)+ax+1)=f(g(x))+c, then

If int x f (x) dx = (f (x))/( 2) then f (x) = e ^(x ^(2))

If int x^(2) e^(3x) dx = e^(3x)/27 f(x) +c , then f(x)=

int(f'(x))/([f(x)]^(2))dx=