Home
Class 11
MATHS
sqrt(i)+sqrt(-i)=sqrt(2)...

`sqrt(i)+sqrt(-i)=sqrt(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that sqrti+sqrt(-i)=sqrt2

Show that one value of (sqrt(i)+sqrt(-)i) is sqrt(2)

(i)1/sqrt(2)+sqrt(3)+1/sqrt(2)

( (sqrt(2)+i sqrt(3))+(sqrt(2)-i sqrt(3)) )/( (sqrt(3)+i sqrt(2))+(sqrt(3)-i sqrt(2)) )

(sqrt(3)+i sqrt(2))(sqrt(2)+i sqrt(3))= ..........

((3+i sqrt(3))(3-i sqrt(3)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2)))

((3+i sqrt(5))(3-i sqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2)))

([(sqrt(2)+i sqrt(3))+(sqrt(2)-i sqrt(3))])/([(sqrt(3)+1sqrt(2))+(sqrt(3)-1sqrt(2))])

Express the following expression in the form of a+ib qquad ((3+i sqrt(5))(3-i sqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2)))

Express the following expression in the form of a+ib((3+i sqrt(5))(3-i sqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2)))