Home
Class 12
MATHS
If |z(1)-1|<2, |z(2)-2|<1, then maximum ...

If `|z_(1)-1|<2, |z_(2)-2|<1`, then maximum value of `|z_(1)+z_(2)|` is.

Promotional Banner

Similar Questions

Explore conceptually related problems

Minimum value of |z_(1)+1|+|z_(2)+1|+|z_(1)z_(2)+1| if |z_(1)|=1,|z_(2)|=1 is

If |z_(1)|!=1,|(z_(1)-z_(2))/(1-bar(z)_(1)z_(2))|=1, then

If |z_(1)|=1,|z_(2)|=1,|(1)/(z_(1))+(1)/(z_(2))|=(3)/(2) then find the value of 2|z_(1)+z_(2)|]|=(3)/(2) then

If |z_(1)|=|z_(2)|=...............=|z_(n)|=1 then |(1)/(z_(1))+(1)/(z_(2))+.........+(1)/(z_(n))|

If |z_(1)| = |z_(2)| = 1, z_(1)z_(2) ne -1 and z = (z_(1) + z_(2))/(1+z_(1)z_(2)) then

If |z_(1)|=|z_(2)|=......=|z_(n)|=1, prove that |z_(1)+z_(2)+z_(3)++z_(n)|=(1)/(z_(1))+(1)/(z_(2))+(1)/(z_(3))++(1)/(z_(n))

Let z_(1),z_(2),z_(3) be three distinct complex numbers satisfying |z_(1)-1|=|z_(2)-1|=|z_(3)-1|* If z_(1)+z_(2)+z_(3)=3 then z_(1),z_(2),z_(3) must represent the vertices of

If z_(1) = 1 +iand z_(2) = -3+2i then lm ((z_(1)z_(2))/barz_(1)) is

If z_(1)=1+i,z_(2)=1-i then (z_(1))/(z_(2)) is

If |z_1|=1,|z_2|=1 then prove that |z_1+z_2|^2+|z_1-z_2|^2 =4.