Home
Class 12
MATHS
Let m be a positive real number then log...

Let `m` be a positive real number then `log(-m)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let x be a positive real number such that sin(arctan\ (x)/(2))=(x)/(3) . The value of (log_(5)x) is equal to

If a, b, c are positive real numbers, then a^("log"b-"log"c) xx b^("log"c-"log"a) xx c^("log"a - "log"b)

Let x,y,z be positive real numbers such that log_(2x)z=3,log_(5y)z=6 and log_(xy)z=(2)/(3) then the value of z is

If a, b, c, are positive real numbers and log_(4) a=log_(6)b=log_(9) (a+b) , then b/a equals

Let G,O,E and L be positive real numbers such that log(G.L)+log(G.E)=3,log(E.L)+log(E.O)=4, log(O.G)+log(O.L)=5 (base of the log is 10) If log(G/O) and log(O /E) are the roots of the equation

If a, b, c are positive real numbers, then (1)/("log"_(ab)abc) + (1)/("log"_(bc)abc) + (1)/("log"_(ca)abc) =

If a, b, c are positive real numbers then (1)/("1+log"_(a)bc) + (1)/("1+log"_(b)ca) +(1)/("1+log"_(c)ab)=

Let B,C,P and L be positive real numbers such that log(B*L)+log(B*P)=2;log(P*L)+log(P*C)=3;log(C*B)+log(C*L)=4 The value of the product (BCPL) equals (base of the log is 10)

If a,b,c are positive real numbers,then (1)/(log_(a)bc+1)+(1)/(log_(b)ca+1)+(1)/(log_(c)ab+1)=