Home
Class 12
MATHS
If f'(x)=f(x) and f(0)=1 then lim(x rarr...

If f'(x)=f(x) and f(0)=1 then `lim_(x rarr0)(f(x)-1)/(x)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) be a differentiable function for all positive numbers such that f(x.y)=f(x)+f(y) and f(e)=1 then lim_(x rarr0)(f(x+1))/(2x)

f(x)=e^x then lim_(x rarr 0) f(f(x))^(1/{f(x)} is

If f'(2)=6 and f'(1)=4 ,then lim_(x rarr0)(f(x^(2)+2x+2)-f(2))/(f(1+x-x^(2))-f(1)) is equal to ?

f(0)=0=g(0) and f'(0)=6=g'(0)thenlim_(x rarr0)(f(x))/(g(x))=

Let f be differentiable at x=0 and f'(0)=1 Then lim_(h rarr0)(f(h)-f(-2h))/(h)=

If f(1)=3 and f'(1)=6 , then lim_(x rarr0)(sqrt(1-x)))/(f(1))

A function f:R rarr R is such that f(1)=3 and f'(1)=6. Then lim_(x rarr0)[(f(1+x))/(f(1))]^(1/x)=

-If f(x) is a quadratic expression such that f(-2)=f(2)=0 and f(1)=6 then lim_(x rarr0)(sqrt(f(x))-2sqrt(2))/(ln(cos x)) is equal to

If f(x)=x,x 0 then lim_(x rarr0)f(x) is equal to

Let f'(x) be continuous at x=0 and f'(0)=4 then value of lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2))