Home
Class 12
MATHS
int1/(1+cos^2x)dx=1/(sqrt(2))tan^(-1)((t...

`int1/(1+cos^2x)dx=1/(sqrt(2))tan^(-1)((tanx)/(sqrt(2)))+c`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(1)/(1+cos^(2)x)dx=(1)/(sqrt(2))tan^(-1)((tan x)/(sqrt(2)))+c

int(1)/(1+3cos^(2)x)dx=(1)/(2)tan^(-1)((tan x)/(2))+c

int(1)/(7+5cos x)dx=(1)/(sqrt(6))tan^(-1)((1)/(sqrt(6))(tan x)/(2))+C(b)(1)/(sqrt(3))tan^(-1)((1)/(sqrt(3))(tan x)/(2))+C(c)(1)/(4)tan^(-1)((tan x)/(2))+C(d)(1)/(7)tan^(-1)((tan x)/(2))+C

int(dx)/(sin^(2)x+Tan^(2)x)=(-1)/(l)cot x-(1)/(k sqrt(2))Tan^(-1)((tan x)/(sqrt(2)))+c then (k)^l=

int(dx)/(sin^(2)x+tan^(2)x)=(-1)/(l)cot x-(1)/(k sqrt(2))Tan^(-1)((tan x)/(sqrt(2)))+c then (k)^l=

" If "int(1)/(x^(4)+1)dx=(1)/(2sqrt(2))tan^(-1)((x^(2)-1)/(sqrt(2)x))+A+c" .Then "A" is equal to "

" If "int(1)/(x^(4)+1)dx=(1)/(2sqrt(2))tan^(-1)((x^(2)-1)/(sqrt(2)x))+A+c" .Then "A" is equal to "

Assertion (A) : int(dx)/(x^(2) + 2x + 3) = (1)/(sqrt(2)) tan^(-1)((x+1)/(sqrt(2))) + c Reason (R) : int(dx)/(x^(2) + a^(2)) = (1)/(a) tan^(-1)((x)/(a)) + c

int(dx)/(3+sin2x)=(1)/(sqrt(k))Tan^(-1)((3Tan x+1)/(sqrt(8)))+C where k is

int(tan x)/(tan^(2)x+tan x+1)dx=x-(k)/(sqrt(A))tan^(-1)((k tan x+1)/(sqrt(A)))+C, then the ordered pir of (K,A) is equal to : (A) (2,1)(B)(-2,3)(C)(2,3)(D)(-2,1)