Home
Class 12
MATHS
If a*b=a^(2)+b^(2)-ab-5 on set Z then 4*...

If a*b=`a^(2)+b^(2)-ab-5` on set `Z` then 4*5=

Promotional Banner

Similar Questions

Explore conceptually related problems

a o+ b=(a+b)^(2)-ab a**b=(ab)^(2)-ab a"@"b=(a-b)^(2)-ab Find the value of (5o+6)-(6"@"3)+(2**4)

The number of elements in the set {(a,b) : a^(2) + b^(2) = 50, a, b in Z} where Z is the set of all integers, is

The number of elements in the set {(a,b):2a^(2)+3b^(2)=35.a*b in Z}, where Z is the set of all integers,is

If a - b = 5 and a^(2)+b^(2)=45 then the value of ab is:

a^3b-a^2 b +5ab-5b

If abs(a)=2, abs(b)=3" and "abs(2a-b)=5," then "abs(2a+b) equals

If a *** b = 2 a + 3b - ab , then the value of (3 *** 5 + 5 *** 3) is

If abs(a)=2, abs(b)=5" and "abs(a times b)=8" then "abs(a*b) is equal to