Home
Class 12
MATHS
The value of the definite integral int0^...

The value of the definite integral `int_0^(pi/3)ln(1+sqrt(3)tanx)dx` equals -

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the definite integral int_(0)^((pi)/(3))ln(1+sqrt(3)tan x)dx equals -

The value of the definite integral int_(0)^(pi//3) ln (1+ sqrt3tan x )dx equals

The value of the definte integral int_(0)^((pi)/(2))ln(1+sqrt(3)tan theta)dx, is equal to (pi)/(p)log_(e)q where q and p prim then (q+p) is equal to

int_(0)^(pi//3) [sqrt(3)tanx]dx=

The value of the integral int_(0)^((pi)/4)(sqrt(tanx))/(sinx cos x) dx equals

The value of the definite integral int_(0)^((pi)/(2))(cos^(10)x*sin x}dx, is equal to

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

The value of the integral int_(pi//6)^(pi//3) (1)/(1+sqrt(tan x))dx is

For theta in(0,(pi)/(2)), the value of definite integral int_(0)^( theta)ln(1+tan theta tan x)dx is equal to

The value of the definite integral int _(0)^(pi//2) ((1+ sin 3x)/(1+2 sin x)) dx equals to: