Home
Class 12
MATHS
Find the range of the following function...

Find the range of the following function: `f(x)=ln(x-[x])`, where [.] denotes the greatest integer function

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=log(x-[x]), which [,] denotes the greatest integer function.

If f(x)=[2x], where [.] denotes the greatest integer function,then

Find the domain and range of the following function: f(x)=log_([x-1])sinx, where [ ] denotes greatest integer function.

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

Find the range of the following functions: f(x)=(e^(x))/(1+absx),xge0 [.] denotes the greatest integer function.

The function f(x)=[x^(2)]+[-x]^(2) , where [.] denotes the greatest integer function, is

Find the domain of the function f(x)=log_(e)(x-[x]) , where [.] denotes the greatest integer function.

The period of the function f(x)=sin(x+3-[x+3]) where [] denotes the greatest integer function

The domain of the function f(x)= ln([[x]]/(5-[x])) where [ . ] denotes the greatest integer function is

The function,f(x)=[|x|]-|[x]| where [] denotes greatest integer function: