Home
Class 11
PHYSICS
Find the workdone if a particle moves fr...

Find the workdone if a particle moves from position `vec(r )_(1)=(2hat(j)+hat(j)-3hat(k))` to a position `vec(r )_(2)=(4hat(i)+6hat(j)-7hat(k))` under the effect of force `vec(F)=(3hat(i)+2hat(j)+4hat(k))N`.

Promotional Banner

Similar Questions

Explore conceptually related problems

A particle is displaced from position vec(r )_(1) = (3hat(i) + 2hat(j) + 6hat(k)) to another position vec(r )_(2)= (14hat(i) + 13hat(j) + 9hat(k)) under the impact of a force 5 hat(i)N . The work done will be given by

The lines vec(r)=hat(i)+t(5hat(i)+2hat(j)+hat(k)) and vec(r)=hat(i)+s(-10hat(i)-4hat(j)-2hat(k)) are -

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(F) = hat(i) + 2hat(j) + hat(k) and vec(V) = 4hat(i) - hat(j) + 7hat(k) find vec(F).vec(V)

Linear momentum vec(P)=2hat(i)+4hat(j)+5hat(k) and position vector is vec(r)=3hat(i)-hat(j)+2hat(k) , the angular momentum is given by

Linear momentum vec(P)=2hat(i)+4hat(j)+5hat(k) and position vector is vec(r)=3hat(i)-hat(j)+2hat(k) , the angular momentum is given by

Find the angle between the following planes vec(r)*(3hat(i)-4hat(j)+5hat(k))=0 and vec(r)*(2hat(i)-hat(j)-2hat(k))=0