Home
Class 12
MATHS
By substitution: Theorem: If int f(x) dx...

By substitution: Theorem: If `int f(x) dx = phi(x)` then `int f(ax+b) dx = 1/a phi(ax + b)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int 1/(ax+b) dx

Theorem: (d)/(dx)(int f(x)dx=f(x)

By substitution: Theorem: int (ax+b)^n dx = (ax+b)^(n+1)/(a(n+1))

By substitution: Theorem: int (ax+b)^n dx = (ax+b)^(n+1)/(a(n+1))

By substitution: Theorem: If int(1)/(ax+b)dx=(1)/(a)ln(ax+b)

By substitution: Theorem: If int(ax+b)^(n)dx=((ax+b)^(n+1))/(a)(n+1)

int e^x {f(x)-f'(x)}dx= phi(x) , then int e^x f(x) dx is

By substitution: Theorem: int sin(ax+b)dx=-(1)/(a)cos(ax+b)+c