Home
Class 12
MATHS
cosec^(-1)(cos x) is real if...

`cosec^(-1)(cos x)` is real if

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of x for which csc^(-1)(cos x) is defined.

D(cos x csc x)=

Find the value of cos ( sec^(-1)x + cosec^(-1) x), |x| ge 1 .

If alpha, beta are the roots of the equations 6x^2+11x+3=0 , then a)Both cos^(-1) alpha and cos^(-1) beta are real b)Both "cosec"^(-1) alpha and "cosec"^(-1) beta are real c)Both cot^(-1) alpha and cot^(-1) beta are real d)None of these

Is sec^(-1)x= cosec^(-1)y , then the value of cos^(-1)(1/x)+cos^(-1)(1/y) will be

Prove that: cos ( cos^(-1) x) = cosec ( cosec^(-1)x).

If y = sec^(-1) [ "cosec x"] + "cosec"^(-1) [sec x] + sin^(-1) [cos x] + cos^(-1)[sinx ], "then "(dy)/(dx) is equal to

The domain of the function f(x)=cos^(-1)(sec(cos^-1 x))+sin^(-1)(cosec(sin^(-1)x)) is

The domain of the function f(x)=cos^(-1)(sec(cos^-1 x))+sin^(-1)(cosec(sin^(-1)x)) is

The domain of the function f(x)=cos^(-1)(sec(cos^-1 x))+sin^(-1)(cosec(sin^(-1)x)) is