Home
Class 11
MATHS
lim(x->0)(1/sinx-1/tanx)...

`lim_(x->0)(1/sinx-1/tanx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xto0)(sinx)^(2tanx)=

Evaluate: ("Lim")_(x->0)(1/x)^(tanx)

lim_(x to 0) (sinx-tanx)/(x) equal to?

Prove : underset(xrarr0)"lim"((1)/(sinx)-(1)/(tanx))=0

The value of lim_(x->0)((sinx)^(1/x)+(1/x)^(sinx)) , where x >0, is (a)0 (b) -1 (c) 1 (d) 2

The value of lim_(x->0)((sinx)^(1/x)+(1/x)^(sinx)) , where x >0, is (a)0 (b) -1 (c) 1 (d) 2

The value of lim_(x->0)((sinx)^(1/x)+(1/x)^(sinx)) , where x >0, is (a)0 (b) -1 (c) 1 (d) 2

The value of lim_(x->0)((sinx)^(1/x)+(1/x)^(sinx)) , where x >0, is 0 (b) -1 (c) 1 (d) 2

lim_(xrarr0)(sinx)^(2tanx)