Home
Class 11
MATHS
lim(x->0)(sin^2 4x+2cos^2x-2cosx)/(cos^2...

`lim_(x->0)(sin^2 4x+2cos^2x-2cosx)/(cos^2x-cos^3x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0) (cos2x-cos4x)/(cos3x-cos5x) =

lim_(x->oo)(sin^4x-sin^2x+1)/(cos^4x-cos^2x+1) is equal to (a) 0 (b) 1 (c) 1/3 (d) 1/2

lim_(x rarr0)(sin3x cos2x)/(sin2x)

lim_(x-gt0)(cos2x-cos3x)/(cos4x-1)

If the determinant |(cos2x,sin^2 x,cos 4x),(sin^2 x,cos 2x,cos^2 x),(cos 4x,cos^2 x,cos 2x)| is expanded in powers of sin x , then the constant term is

If the determinant |(cos2x,sin^2 x,cos 4x),(sin^2 x,cos 2x,cos^2 x),(cos 4x,cos^2 x,cos 2x)| is expanded in powers of sin x, then the constant term is

lim_(x->0) (1-cos x cos 2x cos 3x)/ (sin^2 2x) is equal to a) 3/4 b) 7/4 c) 7/2 d) -3/4

lim_(x->0) (1-cos x cos 2x cos 3x)/ (sin^2 2x) is equal to a) 3/4 b) 7/4 c) 7/2 d) -3/4

lim_(x->0)(1-cos x-cos2x+cos x*cos2x)/(x^(4))

int_(0)^(pi//2)(sin x cos x dx)/(cos^(2)x+3cosx+2)=