Home
Class 11
MATHS
If the normals to the parabola y^2=4a x ...

If the normals to the parabola `y^2=4a x` at three points `(a p^2,2a p),` and `(a q^2,2a q)` are concurrent, then the common root of equations `P x^2+q x+r=0` and `a(b-c)x^2+b(c-a)x+c(a-b)=0` is `p` (b) `q` (c) `r` (d) `1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the normals to the parabola y^2=4a x at three points (a p^2,2a p), and (a q^2,2a q) are concurrent, then the common root of equations P x^2+q x+r=0 and a(b-c)x^2+b(c-a)x+c(a-b)=0 is (a) p (b) q (c) r (d) 1

If the normals to the parabola y^2=4a x at three points (a p^2,2a p), (a q^2,2a q) and (a r^2,2a r) are concurrent, then the common root of equations P x^2+q x+r=0 and a(b-c)x^2+b(c-a)x+c(a-b)=0 is

If the normals to the parabola y^2=4a x at three points (a p^2,2a p) and (a q^2,2a q) and (a r^2,2ar) are concurrent, then the common root of equations P x^2+q x+r=0 and a(b-c)x^2+b(c-a)x+c(a-b)=0 is (a) p (b) q (c) r (d) 1

The chord of contact of tangents from three points P, Q, R to the circle x^(2) + y^(2) = c^(2) are concurrent, then P, Q, R

If p and q are the roots of the equation x^2-p x+q=0 , then p=1,\ q=-2 (b) b=0,\ q=1 (c) p=-2,\ q=0 (d) p=-2,\ q=1

Prove that equations (q-r)x^(2)+(r-p)x+p-q=0 and (r-p)x^(2)+(p-q)x+q-r=0 have a common root.

If p and q are the roots of the equation x^2-p x+q=0 , then (a) p=1,\ q=-2 (b) p=1,\ q=0 (c) p=-2,\ q=0 (d) p=-2,\ q=1

If p and q are the roots of the equation x^2-p x+q=0 , then (a) p=1,\ q=-2 (b) p=1,\ q=0 (c) p=-2,\ q=0 (d) p=-2,\ q=1

The value of p and q(p!=0,q!=0) for which p ,q are the roots of the equation x^2+p x+q=0 are (a) p=1,q=-2 (b) p=-1,q=-2 (c) p=-1,q=2 (d) p=1,q=2

If a, b, c are rational and the tangent to the parabola y^2 = 4kx , at P(p, q) and Q(q, b) meet at R(r, c) , then the equation ax^2 + bx-2c=0 has (A) imaginary roots (B) real and equal roots (C) rational roots (D) irrational roots