Home
Class 11
MATHS
" (iii) If "y=ae^(2x)+be^(-x)," prove th...

" (iii) If "y=ae^(2x)+be^(-x)," prove that "(d^(2)y)/(dx^(2))-(dy)/(dx)-2y=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=ae^(2x)+be^(-x), show that (d^(2)y)/(dx^(2))-(dy)/(dx)-2y=0

x(d^(2)y)/(dx^(2))+(dy)/(dx)+x=0

If y = Ae^(6x) +Be^(-x) prove that (d^(2)y)/(dx^(2)) - 5 (dy)/(dx) - 6y = 0

If y=e^(x)(sin x+cos x), prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)=2y=0

If y=e^(x)(sin x+cos x) prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0

If y=e^(x)(sin x+cos x) prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0

If y=e^(x)sinx , then prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0 ,

If y=e^(x)sinx, prove that (D^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0 .

If y= Ae^(mx)+Be^(nx) prove that (d^(2)y)/(dx^(2))-(m+n)(dy)/(dx)+ (mn)y=0

if y=Ae^(mx)+Be^(nx) then prove that (d^(2)y)/(dx^(2))-(m+n)(dy)/(dx)+mny=0