Home
Class 12
MATHS
[" The integral "],[(pi)/(3)],[int tan^(...

[" The integral "],[(pi)/(3)],[int tan^(3)x],[(pi)/(6)*sin^(3)3x(2sec^(2)x*sin^(2)3x+3tan x*sin6z],[" ) "dx],[" is equal to: "],[" (B) "(9)/(2)]

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(pi/6)^(pi/3) tan^3xsin^2 3x(2sec^2x sin^2 3x+3tanx.sin6x)dx

int_(pi/6)^(pi/3) tan^3xsin^2 3x(2sec^2x sin^2 3x+3tanx.sin6x)dx

int e^(tan x) (sec^(2) x + sec^(3) x sin x ) dx is equal to

int_(pi//6)^(pi//3)(sin^(3)x)/(sin^(3)x+cos^(3)x)dx=

The integral int(sin^(2)xcos^(2)x)/((sin^(3)x+cos^(3)x)^(2))dx is equal to

int _(0)^(pi//2) (sin^(3//2)x)/(sin^(3//2)x+cos^(3//2)x)dx is equal to

int_(pi//6)^(pi//3)(Sin^(3)x)/(Sin^(3)x+Cos^(3)x)dx=

int_0^(pi/2) sin^(3/2x)/(sin^(3/2)x+cos^(3/2)x)dx is equal to :

int_0^(pi/2) sin^(3/2x)/(sin^(3/2)x+cos^(3/2)x)dx is equal to :