Home
Class 9
MATHS
" (a) Prove that "(1)/(1+a^(m-n))+(1)/(1...

" (a) Prove that "(1)/(1+a^(m-n))+(1)/(1+a^(n-m))=1

Promotional Banner

Similar Questions

Explore conceptually related problems

What is ( 1)/( a^(m-n)-1) + ( 1)/( a^(n-m)-1) equal to ?

If a=x^(m+n)y^(1),b-x^(n+l)y^(m) and c=x^(l+m)y^(n), prove that a^(m-n)b^(n-1)c^(1-m)=1

Prove that: tan^(-1)((m)/(n))+tan^(-1)((n-m)/(n+m))=[(pi)/(4)(m)/(n)>;-1(-3 pi)/(4)(m)/(n)<-1

Prove that tan^(-1)((m)/(n))-tan^(-1)((m-n)/(m+n))=(pi)/(4).

If y=(x-a)^(m)(x-b)^(n) , prove that (dy)/(dx)=(x-a)^(m-1)(x-b)^(n-1)[(m+n)x-(an+bm) ].

If L(m,n)=int_(0)^(1)t^(m)(1+t)^(n),dt , then prove that L(m,n)=(2^(n))/(m+1)-n/(m+1)L(m+1,n-1)

If L(m,n)=int_(0)^(1)t^(m)(1+t)^(n),dt , then prove that L(m,n)=(2^(n))/(m+1)-n/(m+1)L(m+1,n-1)

If L(m,n)=int_(0)^(1)t^(m)(1+t)^(n),dt , then prove that L(m,n)=(2^(n))/(m+1)-n/(m+1)L(m+1,n-1)