Home
Class 10
MATHS
" 9."x(x+y)^(3)-3x^(2)y(x+y)...

" 9."x(x+y)^(3)-3x^(2)y(x+y)

Promotional Banner

Similar Questions

Explore conceptually related problems

Add : x^(3) - x^(2)y + 5xy^(2) + y^(3) , -x^(3) - 9xy^(2) + y^(3), 3x^(2)y + 9xy^(2)

{:("Column" A ,, "Column" B), ((3x^(2) - 5)- (2x^(2) - 5 + y^(2)) ,, (a) x^(2) + xy + y^(2)) , (9x^(2) - 16y^(2) ,, (b) 2) , ((x^(3) - y^(3))/(x-y) ,, (c) (9x + 16y) (9x - 16y)) , ("The degree of " (x + 2) (x+3) ,, (d) x^(2) - y^(2)) , (,, (e) 1) , (,, (f) (3x + 4y) (3x - 4y)):}

If 7x - 15y = 4x + y , find the value of x: y . Hence, use componendo and dividendo to find the values of : (i) (9x + 5y)/(9x - 5y) (iI) (3x^(2) + 2y^(2))/(3x^(2) - 2y^(2))

Solve : (3)/(x + y ) + ( 2)/(x - y ) = 2 and (9)/(x + y ) - ( 4)/(x - y) = 1 .

The value of (x-y)^3+(x+y)^3+3(x-y)^2(x+y)+3(x+y)^2(x-y) is

Simplify the following:(x-2y) (y-3x)+(x+y) (x-3y)- (y-3x)(4x-5y).

Simplify the following : (x-y)(2y-x)+(x+y)(x-y)-(y-3x)(2x-3y)

If log_(y)x-log_(y^(3))x^(2)= 9 (log_(x)y)^(2) and x = 9y find y.