Home
Class 10
MATHS
" (i) "3,1,-1,-3,......

" (i) "3,1,-1,-3,...

Promotional Banner

Similar Questions

Explore conceptually related problems

which term of the following sequence : 1/3^1 , 1/3^2 , 1/3^3 ...is 1/3^5 ?

The value of 3+(1)/(3+(1)/(3+(1)/(3+...*oo)))

1-:1/3= 1/3 (b) 3 1 1/3 (d) 3 1/3

1 + 1/3 + (1.3)/(1.2) .(1)/(3^2) + (1.3.5.)/(1.2.3).(1)/(3^3) + ……oo =

1+ ((1)/(3) + (1)/(3^2) ) + (( 1)/( 3^3) + (1)/( 3^4) + (1)/( 3^5) ) + .... sum of the terms in the n^( th) bracket=

Find the value of | [ 2 , 4 ] , [ 1 , 3 ] | + | [ 4 , 1 ] , [ 1 , 3 ] | + | [ 3 , 3 ] , [ 1 , 3 ] | + | [ 1 , 2 ] , [ 1 , 3 ] |

Let P_ (n) = (2 ^ (3) -1) / (2 ^ (3) +1) * (3 ^ (3) -1) / (3 ^ (3) +1) * (4 ^ ( 3) -1) / (4 ^ (3) +1) ...... (n ^ (3) -1) / (n ^ (3) +1) Prove that lim_ (n rarr oo) P_ ( n) = (2) / (3)

If A=[(1,1,1),(1,1,1),(1,1,1)] , prove that A^(n)=[(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1))],n in N .

If A=[(1,1,1),(1,1,1),(1,1,1)] , prove that A^(n)=[(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1))],n in N .