Home
Class 12
MATHS
" 7."e^(x)+e^(y)=e^(x+y)...

" 7."e^(x)+e^(y)=e^(x+y)

Promotional Banner

Similar Questions

Explore conceptually related problems

If e^(x) +e^(y) =e^(x+y),then (dy)/(dx)=

If e^(x)+ e^(y) = e^(x+y), find dy/dx.

find the derivative of e^(x) + e^(y) = e^(x +y)

If e^(x)+e^(y)=e^(x+y) , prove that : (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) .

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) or,(dy)/(dx)+e^(y-x)=0

If e^(x) + e^(y) = e^(x + y) , then prove that (dy)/(dx) = (e^(x)(e^(y) - 1))/(e^(y)(e^(x) - 1)) or (dy)/(dx) + e^(y - x) = 0 .

If e^(x)+e^(y)=e^(x+y)" then "y_(1)=

If e^(x)+e^(y)=e^(x+y) , prove that (dy)/(dx)+e^(y-x)=0 .

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)+e^(y-x)=0