Home
Class 13
MATHS
[f(x)={[-2,quad -2<=x<0],[x^(2)-2,quad 0...

[f(x)={[-2,quad -2<=x<0],[x^(2)-2,quad 0<=x<=2]" and "],[g(x)=|f(x)|+f(|x|)." Then,in the "],[" interval "(-2,2),g(x)" is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_( xto 2 ) (f(x) -f(2))/( x-2) exist ,then

If f(x)=|x-2|+1 , evaluate lim_(xto2+)(f(x)-f(2))/(x-2) and lim_(xto2-)(f(x)-f(2))/(x-2) . What can you say about the existence of f' (x) at x = 2 ?

If f(x) =|x-2|+1, evaluat Lt_(xto2+)(f(x)-f(2))/(x-2) and Lt_(xto2-)(f(x)-f(2))/(x-2) . What can you say about the existence of f'(x) at x=2?

The range of f(x) =2+2x -x^(2) is :

A function f is defined by f(x)=3-2x . Find x such that f(x^(2))=(f(x))^(2).

A function f is defined by f(x)=3-2x . Find x such that f(x^(2))=(f(x))^(2).

Find the range of following quadratic expressions: f(x)=-x^(2)+2x+3f(x)=-x^(2)-2x+3f(x)=x^(2)-4x+6

If f: RR -> RR is defined by f(x)={((x-2)/(x^2-3x+2), if x in RR\{1, 2}), (2, if x=1), (1, if x=2):}, then lim_(x->2) (f(x)-f(2))/(x-2)

If "f(x)" be such that f(x)=max{|2-x|,2-x^(3)} ,then

Let f(x)= 3x -2 find (f(x+2) -f(2))/(x)