Home
Class 11
MATHS
sin A+sin B+sin C=4cos(A)/(2)cos(B)/(2)c...

sin A+sin B+sin C=4cos(A)/(2)cos(B)/(2)cos(C)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Theorem 4:sin A+sin B+sin C=4(cos A)/(2)(cos B)/(2)(cos C)/(2)

Assertion A:In/_ABC,sum(cos A)/(sin B sin C)=2 Reason R:In/_ABC,sin A+sin B+sin C=4(cos A)/(2)(cos B)/(2)(cos C)/(2)

If A , B , C are angles in a triangle , then prove that sin A + sin B + sin C =4 cos. (A)/(2) cos . (B)/(2) cos .(C)/(2)

If A + B + C = 180^(@) , prove that sin A + sin B + sin C = 4 cos (A)/(2) cos"" (B)/(2) cos"" (C )/(2)

Assertion A: In DeltaABC, sum(cos A)/(sin B sin C)=2 Reasin(R):In DeltaABC, sin A +sinB+sin C= 4"cos"A/2"cos"B/2"cos"C/2

If A,B,C are the angles of a triangle then prove that cos A+cos B-cos C=-1+4cos((A)/(2))cos((B)/(2))sin((C)/(2))

If A+B+C=180^@ prove that sin A+sin B+sin C=4 "cos" A/2 "cos" B/2 "cos" C/2

If A+B+C= (pi)/(2) , then show that sin 2A+sin 2B +sin 2C=4 cos A cos B cos C

Prove that : (sin 2A+sin 2B + sin 2C)/(cos A + cos B + cos C-1) = 8 cos(A/2) cos( B/2) cos( C/2)

Prove that : (sin 2A+sin 2B + sin 2C)/(cos A + cos B + cos C-1) = 8 cos(A/2) cos( B/2) cos( C/2)