Home
Class 12
MATHS
{(|x|^(3))/(a)-[(x)/(a)]},a>0" where "[x...

{(|x|^(3))/(a)-[(x)/(a)]},a>0" where "[x]" denotes the greatest integer less than or equit to "

Promotional Banner

Similar Questions

Explore conceptually related problems

lim(x rarr a_(-)){(|x|^(3))/(a)-[(x)/(a)]^(3)},(a<0) where [x] denotes the greatest integer less than or equal to x is equal to:

lim(x->a^-) {(|x|^3)/a-[x/a]^3} ,(a > 0) , where [x] denotes the greatest integer less than or equal to x is equal to:

lim(x->a_-) {(|x|^3)/a-[x/a]^3} ,(a < 0) , where [x] denotes the greatest integer less than or equal to x is equal to:

int_(0)^(15/2)[x-1]dx= where [x] denotes the greatest integer less than or equal to x

lim_(xrarr oo) (log[x])/(x) , where [x] denotes the greatest integer less than or equal to x, is

lim_(xrarr oo) (log[x])/(x) , where [x] denotes the greatest integer less than or equal to x, is

Let f(x)=(x-[x])/(1+x-[x]), where [x] denotes the greatest integer less than or equal to x,then the range of f is

The function f(x)=(tan |pi[x-pi]|)/(1+[x]^(2)) , where [x] denotes the greatest integer less than or equal to x, is

The domain of the function f(x) = sqrt((4-x^(2))/([x]+2)) where [x] denotes the greatest integer less than or equal to x,is