`sin2A`:

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C= 180^(@) , " then " ( sin 2A- sin 2B- sin 2C)/(sin 2B- sin 2A - sin 2C)=

In DeltaABC, if sin^2 A+ sin^2 B = sin^2 C , then the triangle is

In triangleABC sin^2A+sin^2B =sin^2C then angleC=

In triangle ABC if sin^2B+sin^2C=sin^2A then

In DeltaABC, if sin^2 A+ sin^2 B = sin^2 C , then the triangle is

In triangleABC prove that sin^2(A/2)+sin^2(B/2)+sin^2(C/2)=1-2sin(A/2)sin(B/2)sin(C/2)

A+B+C=pi ,prove that sin^2(A/2)+sin^2(B/2)+sin^2(C/2)=1-2sin(A/2)sin(B/2)sin(C/2)

If A+B+C = 180^0 , Prove that : sin^2 (A/2) + sin^2 (B/2) + sin^2 (C/2) =1-2 sin (A/2) sin (B/2) sin (C/2)

If A+B+C = 180^0 , Prove that : sin^2 (A/2) + sin^2 (B/2) + sin^2 (C/2) =1-2 sin (A/2) sin (B/2) sin (C/2)

Show that in a triangle ABC, a^2(sin^2B-sin^2C)+b^2(sin^2C-sin^2A)+c^2(sin^2A-sin^2B)=0