Home
Class 10
MATHS
NCRRTquad " (6) "(1)/(b^(2)+a^(2)x^(2))...

NCRRTquad " (6) "(1)/(b^(2)+a^(2)x^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of (5a^(6))x(-10ab^(2))x(-2.1a^(2)b^(3)) for a=1 and b=(1)/(2)

Prove that the locus of the middle points of normal chords of the ellipse x^(2)/a^(2)+y^(2)/b^(2)=1 is the curve (x^(2)/a^(2)+y^(2)/b^(2))(a^(6)/x^(2)+b^(6)/y^(2))=(A^(2)-B^(2))^(2)

int(x^(3)-x)/(1+x^(6))dx is equal to a) 1/6"log"(x^(4)-x^(2)+1)/((1+x^(2))^(2))+C b) 1/6"tan"^(-1)((x^(2)+1)^(2))/(2)+C c) "log"(x^(4)-x^(2)+1)/((1+x^(2))^(2))+C d) "tan"^(-1)(x^(2)+1)^(2)/(2)+C

Multiply: (x^(6)-y^(6))by(x^(2)+y^(2))(x^(2)+y^(2))by(3a+2b)

If (x+1/x+1)^(6)=a_(0)(a_(1)x+(b1)/x) +(a_(2)x^(2)+b_(2)/x^(2))+...+(a_(6)x^(6)+b_(6)/x^(6)), the value of a_(0) is

intx(lna^(a^(x/2))/(3a^((5x)/2)b^(3x))+(lnb^(b^x))/(2a^(2x)b^(4x)))dx(w h e r ea , b in R^+)i s (a) 1/(6lna^2b^3)a^(2x)b^(3x)ln(a^(2x)b^(3x))/e+k (b) 1/(6lna^2b^3)1/(a^(2x)b^(3x))ln1/(e a^(2x)b^(3x))+k (c) 1/(6lna^2b^3)1/(a^(2x)b^(3x))ln(a^(2x)b^(3x))+k (d) -1/(6lna^2b^3)1/(a^(2x)b^(3x))ln(e(a^(2x)b^(3x)))+k

intx((lna^(x/2)/(3a^((5x)/2)b^(3x))+(lnb^b^x)/(2a^(2x)b^(4x)))dx(w h e r ea , b in R^+)i se q u a lto 1/(6lna^2b^3)a^(2x)b^(3x)ln(a^(2x)b^(3x))/e+k 1/(6lna^2b^3)1/(a^(2x)b^(3x))ln1/(e a^(2x)b^(3x))+k 1/(6lna^2b^3)1/(a^(2x)b^(3x))ln(a^(2x)b^(3x))+k -1/(6lna^2b^3)1/(a^(2x)b^(3x))ln(a^(2x)b^(3x))+k

intx((lna^(x/2)/(3a^((5x)/2)b^(3x))+(lnb^b^x)/(2a^(2x)b^(4x)))dx(w h e r ea , b in R^+)i se q u a lto 1/(6lna^2b^3)a^(2x)b^(3x)ln(a^(2x)b^(3x))/e+k 1/(6lna^2b^3)1/(a^(2x)b^(3x))ln1/(e a^(2x)b^(3x))+k 1/(6lna^2b^3)1/(a^(2x)b^(3x))ln(a^(2x)b^(3x))+k -1/(6lna^2b^3)1/(a^(2x)b^(3x))ln(a^(2x)b^(3x))+k

intx((lna^(x/2)/(3a^((5x)/2)b^(3x))+(lnb^b^x)/(2a^(2x)b^(4x)))dx(w h e r ea , b in R^+)i se q u a lto 1/(6lna^2b^3)a^(2x)b^(3x)ln(a^(2x)b^(3x))/e+k 1/(6lna^2b^3)1/(a^(2x)b^(3x))ln1/(e a^(2x)b^(3x))+k 1/(6lna^2b^3)1/(a^(2x)b^(3x))ln(a^(2x)b^(3x))+k -1/(6lna^2b^3)1/(a^(2x)b^(3x))ln(a^(2x)b^(3x))+k

If x, y in R and |{:((a ^(x) + a ^(-x) ) ^(2) , (a ^(x) - a ^(-x) ) ^(2), 1),((b ^(x) + b ^(-x)) ^(2),(b ^(x) - b ^(-x) ) ^(2) , 1), ( ( c ^(x) + c ^(-x)) ^(2) , (c ^(x) - c ^(-x)) ^(2) , 1):}|=2 y + 6 then y = ____________.