Home
Class 11
MATHS
Prove that P(n,r)=nPr=(n!)/((n-r)!...

Prove that `P(n,r)=nP_r=(n!)/((n-r)!`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that P(n,r) = (n- r+1) P(n,r-1)

11. Prove that nP_(r)=n(n-1)P_(r-1)

Prove that .^(n)P_(r)=.^(n-1)P_(r)+r.^(n-1)P_(r-1) .

Prove that ""^(n)P_(r )= ""^(n)C_(r )*^rP_(r ) .

Prove that: ""^(n-1)P_r=(n-r)* ""^(n-1)P_(r-1)

Prove that ((n-1)!)/((n-r-1)!)+r.((n-1)!)/((n-r)!)=(n!)/((n-r)!)

Prove that (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!) =((n+1)!)/(r!(n-r+1)!)

Prove that (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!)= ((n+1)!)/ (r!(n-r+1)!) .

Prove that (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!) =((n+1)!)/(r!(n-r+1)!)

Prove that .^(n-1)P_r+r.^(n-1)P_(r-1)=^nP_r .